应用非线性色散关系数值求解双曲型缓坡方程

被引:9
作者
郑永红
沈永明
邱大洪
机构
[1] 大连理工大学海岸与近海工程国家重点实验室!辽宁大连
基金
高等学校博士学科点专项科研基金; 国家自然科学基金重点项目;
关键词
非线性色散; 双曲型缓坡方程; 数值模拟; 水波;
D O I
10.13243/j.cnki.slxb.2001.02.013
中图分类号
U6563 [];
学科分类号
摘要
在经典双曲型缓坡方程的基础上 ,通过引入非线性色散关系 ,使其能够有效地考虑波浪的非线性影响 ,数值格式的改进使方程的数值求解快速高效 .将非线性色散关系和改进后的数值格式用于经典的椭圆形浅滩上的波浪变形计算 ,取得了比较满意的结果 .
引用
收藏
页码:69 / 75
页数:7
相关论文
共 13 条
[1]  
A Practical Alternative to the Mild-Slope Wave Equation. Copeland G J M. Coastal Engineering . 1985
[2]  
An Efficient Finite-Difference Approach to the Mild-Slope Equation. Madsen P A,Larsen J. Coastal Engineering . 1987
[3]  
Verification of numerical wave propagation models for simple harmonic linear water waves. Berkhoff J C W,Booy N,Radder A C. Coastal Engineering . 1982
[4]  
Refraction-Diffraction Model for Weakly Nonlinear Water Waves. Liu P L F,Tsay T K. Journal of Fluid Mechanics . 1984
[5]  
Numerical solution of the elliptic mild-slope equation for irregular wave propagation. Li B,Reeve D E,Fleming C A. Coastal Engineering . 1993
[6]  
Alternative Form of Boussinesq Equations for Nearshore Wave Propagation. Nwogu O. J. Wtrwy. Port.Coast. and Oc. Engrg . 1993
[7]  
A Generalize Conjugate Gradient Model for the Mild-slope Equation. Li Bin. Coastal Engineering . 1994
[8]  
Boussinesq Equations for Wave Transformation on Porous Beds. Cruz E C,Isobe M,Watanabe A. Coastal Engineering . 1997
[9]  
An approximate model for nonlinear dispersion in monochromatic wave propagation models. Kirby J T,Dalrymple R A. Coastal Engineering . 1986
[10]  
Modified Boussinesq Equations and Associated Parabolic Model for Water Wave Propagation. Chen Yongze,Liu P L F. Journal of Fluid Mechanics . 1995