相空间重构中最优滞时的确定

被引:11
作者
王军
石炎福
余华瑞
机构
[1] 四川大学化学工程系!四川成都
关键词
混沌吸引子; 延迟时间; 嵌套维; Shannon熵;
D O I
10.15961/j.jsuese.2001.02.012
中图分类号
O415.5 [混沌理论];
学科分类号
摘要
针对混沌理论的相空间重构技术中 ,自相关函数法和互信息函数法在确定延迟时间时存在的不足 ,提出了根据不同嵌套维下的混沌吸引子所包含的信息量Shannon熵随延迟时间 τ的变化情况 ,来确定不同嵌套维下重构混沌吸引子的最优滞时 ,这种方法把物理问题转化为纯几何问题。
引用
收藏
页码:47 / 51
页数:5
相关论文
共 15 条
[1]  
Method to ditinguish possible chaos from colored noise and to determine embedding parameters. Kennel M B,Isabelle S. Physical Review A Atomic Molecular and Optical Physics . 1992
[2]  
Reconstruction expansion as a geometry-based framework for choosing proper delay times. Rosenstein M T,Collins J J,De Luca C J. Physica D Nonlinear Phenomena . 1994
[3]  
State space reconstruction in the presence of noise. Casdagli M,Eubank S,Farmer J D,Gibson J. Physica D Nonlinear Phenomena . 1991
[4]  
Optimal embeddings of chaotic attractors from topological considerations. Liebert W,Pawelzik K,Schuster H G. Europhysics Letters . 1991
[5]  
Estimation of the number of degrees of freedom from chaotic time series. Cenys A,Pyragas K. Physics Letters A . 1988
[6]  
Measuring the strangeness of strange attractors. Grassberger P,Procacia I. Physical Review Letters . 1983
[7]  
Reconstructing attractors from scalar time series:A comparison of singular system and redudancy criteria. Fraser A M. Physica D Nonlinear Phenomena . 1989
[8]  
Local false nearest neighbors and dynamical dimensions from observed chaotic data. Abarbanel H D I,Kennel M B. Physical Review E Statistical Nonlinear and Soft Matter Physics . 1993
[9]  
Geometry from a time series. Packard NH,Crutchfield J P,Farmers J D,Shaw R S. Physical Review Letters . 1980
[10]  
The analysis of observed chaotic data in physical systems. Ababrbanel H D I,Brown R,Sidorowich J J,Tsimring L S. Reviews of Modern Physics . 1993