基于变量选择-神经网络模型的复杂路网短时交通流预测

被引:11
作者
蒋士正
许榕
陈启美
机构
[1] 南京大学电子科学与工程学院
关键词
短时交通流预测; 最小绝对收缩和选择算子; 变量选择; 神经网络;
D O I
10.16183/j.cnki.jsjtu.2015.02.024
中图分类号
U491.14 [];
学科分类号
082302 ; 082303 ;
摘要
针对传统交通流预测模型正在由单断面历史数据处理向多断面、多时刻历史数据处理转变,但在考虑各断面间的影响时,多变的交通状况往往会使预测模型复杂化的问题,引入一种多元线性回归最小绝对收缩和选择算子方法(Lasso),并利用其优秀的变量选择能力,在复杂路网多断面中选出相关性较高的断面;结合神经网络(NN)的非线性特性,提出了Lasso-NN组合模型.结果表明:Lasso-NN模型在路网交叉口对未来15min交通流数据预测的误差率低于9.2%;在非交叉口的误差率低于6.7%,总体优于各自单独使用得出的结果.
引用
收藏
页码:281 / 286
页数:6
相关论文
共 11 条
[1]   一种星形神经网络的混沌同步 [J].
张文龙 ;
于洪洁 .
上海交通大学学报, 2013, 47 (02) :220-225
[2]   短时交通流预测模型综述 [J].
王进 ;
史其信 .
中国公共安全(学术卷), 2005, (01) :92-98
[3]  
Short-term traffic forecasting: Where we are and where we’re going[J] . Eleni I. Vlahogianni,Matthew G. Karlaftis,John C. Golias.Transportation Research Part C . 2014
[4]   Network-Scale Traffic Modeling and Forecasting with Graphical Lasso and Neural Networks [J].
Sun, Shiliang ;
Huang, Rongqing ;
Gao, Ya .
JOURNAL OF TRANSPORTATION ENGINEERING, 2012, 138 (11) :1358-1367
[5]   Real-time road traffic forecasting using regime-switching space-time models and adaptive LASSO [J].
Kamarianakis, Yiannis ;
Shen, Wei ;
Wynter, Laura .
APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2012, 28 (04) :297-315
[6]  
DALASS: Variable selection in discriminant analysis via the LASSO[J] . Nickolay T. Trendafilov,Ian T. Jolliffe.Computational Statistics and Data Analysis . 2007 (8)
[7]   Sparse principal component analysis [J].
Zou, Hui ;
Hastie, Trevor ;
Tibshirani, Robert .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (02) :265-286
[8]  
Regularization and variable selection via the elastic net[J] . HuiZou,TrevorHastie.Journal of the Royal Statistical Society: Series B (Statistical Methodology) . 2005 (2)
[9]  
Least Angle Regression[J] . Bradley Efron,Trevor Hastie,Iain Johnstone,Robert Tibshirani.The Annals of Statistics . 2004 (2)
[10]  
Neural Networks in Civil Engineering: 1989–2000[J] . HojjatAdeli.Computer‐Aided Civil and Infrastructure Engineering . 2002 (2)