改进的粒子群算法及在CVaR模型中的应用

被引:3
作者
刘衍民 [1 ]
赵庆祯 [2 ]
牛奔 [3 ]
机构
[1] 遵义师范学院数学系
[2] 山东师范大学管理与经济学院
[3] 深圳大学管理学院
关键词
广义学习; 粒子群算法; 柯西变异; 条件风险价值(CVaR);
D O I
暂无
中图分类号
O212.1 [一般数理统计];
学科分类号
摘要
为了求解带有条件风险价值(CVaR)约束的均值-方差模型,提出一种基于广义学习和柯西变异的粒子群算法(CCPSO).在CCPSO算法中,为了提升种群跳出局部最优解的能力,引入一种广义学习策略,提升粒子向最优解飞行的概率;并引入一种动态变异概率,对粒子自身最优位置进行柯西变异,更好地引导种群的飞行;最后,根据全局最优粒子的运行状况,每间隔若干代对其进行变异,以产生全局新的领导者.在基准函数测试中,结果显示CCPSO算法有较好的运行结果.在CVaR模型投资组合优化中,与其它算法相比,CCPSO算法所获结果是有效的,并且优于其它算法.
引用
收藏
页码:139 / 147
页数:9
相关论文
共 12 条
[1]  
Particle swarm optimization. Kennedy J, Eberhart RC. Proceedings of IEEE International Conference on Neural Networks . 1995
[2]  
A cooperative approach to particle swarm optimization. Vanden Bergh F, Engelbrecht A P. IEEE Transactions on Evolutionary Computation . 2004
[3]  
Economic implication of using a mean-VaR model for portfolio selection: a comparison with mean-variance analysis. Alexander G, Baptista A. Journal of Econometrics . 2002
[4]  
Optimization of conditional value-at-risk. Rockfeller T, Uryasev S. The Journal of Risk . 2000
[5]  
Portfolio selection. Markowitz HM. The Journal of Finance . 1952
[6]  
Portfolio Optimization with Conditional Value-at-Risk Objective and Constraints. Krokhmal,P,Palmquist,J,Uryasev,S. The Journal of Risk . 2002
[7]  
Economic implications of using a mean-VaR model for portfolio selection: A comparison with mean-variance analysis[J] . Gordon J. Alexander,Alexandre M. Baptista. &nbspJournal of Economic Dynamics and Control . 2002 (7)
[8]  
A hybrid particle swarm algorithm with Cauchy mutation. Wang H,Liu C. IEEE Swarm Intelligence Symposium . 2007
[9]   一种基于动态邻居和变异因子的粒子群算法 [J].
刘衍民 ;
赵庆祯 ;
隋常玲 ;
邵增珍 .
控制与决策, 2010, (07) :968-974
[10]  
Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. Ratnaweera A,Halgamuge SK,Watson HC. IEEE Transactions on Evolutionary Computation . 2004