基于数字信息素的无人机集群搜索控制方法

被引:16
作者
沈东
魏瑞轩
茹常剑
机构
[1] 空军工程大学航空航天工程学院
关键词
无人机; 集群; 搜索; 数字信息素;
D O I
暂无
中图分类号
TP301.6 [算法理论];
学科分类号
081202 ;
摘要
研究了无人机集群搜索问题的由来、概念、特点,反应行为机制的重要性以及信息素的应用价值。模拟两种基本的生物信息素,设计了一种基于数字信息素的无人机集群搜索控制方法。从全局决策和单机决策的角度,建立了基于数字信息素的无人机集群搜索分布式决策方法。抽象出所建立的数字信息素模型的主要特征,研究分析了具备此类特征的集群搜索系统的稳定性,并确定了集群边界。仿真结果表明,该方法能够形成稳定的数字信息素闭环,能够和所设计的飞行决策方法结合,使多机呈现出鲜明的集群行为特征,实现无人机集群搜索控制;仿真同时表明,该方法驱动的无人机集群搜索的效率显著优于常规编队模式,这也从侧面证明了无人机集群的搜索能力远高于无人机编队。
引用
收藏
页码:591 / 596
页数:6
相关论文
共 11 条
[1]  
Swarming coordination of multiple UAV’’s for collabora-tive sensing. Parunak D. Proc.of the 2nd AIAA Unmanned UnlimitedSystems,Technologies,and Operations . 2003
[2]  
Ongoing development of an autonomousaerial reconnaissance system at georgia tech. Proctor A A,Gwin B. Proc.of theInternational Aerial Robotics Competition Conference . 2003
[3]  
Control of UAV swarms:what the bugscan teach us. Paolo G,Benjamin S. Proc.of the 2nd AIAA Unmanned UnlimitedSystems,Technologies,and Operations . 2003
[4]  
Demonstration of digital pheromoneswarming control of multiple unmanned air vehicles. Sauter J A,Matthews R. Proc.of the AIAA Infotech and Aerospace Conference and Exhibit . 2005
[5]  
Digital pheromones for autonomous coor-dination of swarming UAVs. Parunak D,Purcell M. Proc.of the AIAA1st Tech-nical Conference and Workshop on Unmanned Aerospace Vehi-cles . 2002
[6]  
Cooperative control of multiple unmanned aerial vehicles using the potential field theory. Eun Y,Bang H. Journal of Aircraft . 2006
[7]  
Decentralized control of autonomous swam systems using artificial potential functions: analytical design guidelines. Dong H K,Wang H O,Ye G H. 43rd IEEE Conference on Decision and Control . 2004
[8]  
Control design for unmanned aerial vehicle swarming. Mevans I. Proc.of the AIAA Infotech and Aerospace Conferenceand Exhibit . 2004
[9]  
Digital pheromone implementation of PSO with ve-locity vector accelerated by commodity graphics hardware. Kalivarapu V. Proc.of the 50th AIAA Structures,Structural Dynamics,and Materials Conference . 2009
[10]  
An exhaustive swarming search strategy based ondistributed pheromone maps. Erignac C A. Proc.of the AIAA Infotechand Aerospace Conference and Exhibit . 2008