基于用户学习的智能动态热舒适控制系统

被引:12
作者
李慧 [1 ,2 ,3 ]
张庆范 [1 ]
段培永 [2 ]
机构
[1] 山东大学控制科学与工程学院
[2] 山东省建筑节能重点实验室
[3] 可再生能源建筑利用技术省部共建教育部重点实验室
关键词
热舒适; 模糊; 学习; HCMAC神经网络;
D O I
10.15961/j.jsuese.2011.02.041
中图分类号
TU111 [建筑热工学];
学科分类号
081304 ;
摘要
静态的热环境易造成人体热适应能力降低,对健康不利。动态的热环境与自然环境相似更有利于用户的健康。提出一种基于用户学习的智能动态热舒适控制系统,在该系统中采用PMV(Predicted Mean Vote)作为控制目标,为了满足不同用户的需要提出个人热舒适区模糊学习算法,可根据个人偏好在线修改个人热舒适区;在计算实验的基础上提出动态热舒适控制策略,动态热舒适区包括舒适区和节能区,在动态热舒适控制中舒适区和节能区周期性交替变化。实验结果表明,该方法即满足用户的热舒适性需求,与静态热舒适控制相比节能效果明显,且对用户的健康有利。
引用
收藏
页码:128 / 135
页数:8
相关论文
共 12 条
[1]  
Optimized monthly-fixd thermostat-setting scheme for maximum energy-savings and thermal com-fort in air-conditioned spaces. Al-Sanea S A,Zedan M F. Applied Energy . 2008
[2]  
PMV-basedpredictive algorithms for controlling thermal comfort in build-ing plants. Emerson D,Gustavo H C O,Roberto Z F,et al. 16th IEEE International Conference on Con-trol Applications:Part of IEEE Multi-conference on Systemsand Control . 2007
[3]  
Predicting the frequency of hot and cold com-plaints in buildings. Federspiel C C. International Journal of HVAC&RResearch . 2000
[4]  
Energy conversion[P]. 英国专利:GB0802546D0,2008-03-19
[5]  
Fuzzy logic andneural network approximation for Indoor comfort and energyoptimization. Ari S,Khalifa H E,Dannenhoffer J F,et al. Proceedings of Annual Meeting of FuzzyInformation Processing Society of the North American . 2006
[6]  
Reduce air-conditioning system en-ergy using PMV index. Li Hui,Zhang Qingfan. International Conference for En-hanced Building Operations Committee . 2006
[7]  
Optimal comfort control for variable-speed heat pumps. MacArthur J W,Grald E W. ASHRAE Transactions . 1988
[8]   超闭球CMAC的性能分析及多CMAC结构 [J].
段培永 ;
任化芝 ;
邵惠鹤 .
自动化学报, 2000, (04) :563-567
[9]  
Martin.Clifford C.Federspiel. Responding to Thermal Sensation Complains in Buildings. Rodney A. ASHRAE Transactions . 2002
[10]  
Dynamic evaluation of thermal comfort environment of air-conditioned buildings. Wang Hanqing,et al. Building and Environment . 2006