非精确概率下基于证据理论的典型系统可靠性模型

被引:6
作者
锁斌
程永生
曾超
李军
机构
[1] 中国工程物理研究院电子工程研究所
关键词
可靠性; 不确定性; 非精确概率; 证据理论;
D O I
10.16182/j.cnki.joss.2013.02.003
中图分类号
TB114.3 [可靠性理论];
学科分类号
1201 ;
摘要
当系统的各个单元的失效概率为不精确概率时,传统的概率方法难以使用,而区间分析法等非概率方法得到的结果则比较粗糙。基于证据理论,建立了非精确概率下串联、并联、串并混联、k-out-of-n等典型系统的可靠性模型,利用信任函数和似然函数、根据证据推理,将单元可靠性中的不确定性传递到顶层系统,从而得出系统失效概率和可靠度的概率分布的上下界。实例分析表明,提出的方法能较好的处理可靠性计算中的不精确信息,且比区间分析法得到的有效信息更多。
引用
收藏
页码:317 / 321
页数:5
相关论文
共 8 条
[1]  
Detection capacity, information gaps and the design of surveillance programs for invasive forest pests[J] . Denys Yemshanov,Frank H. Koch,Yakov Ben-Haim,William D. Smith. Journal of Environmental Management . 2010 (12)
[2]  
Building a binary outranking relation in uncertain, imprecise and multi-experts contexts: The application of evidence theory[J] . Mohamed Ayman Boujelben,Yves De Smet,Ahmed Frikha,Habib Chabchoub. International Journal of Approximate Reasoning . 2009 (8)
[3]  
A sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory[J] . J.C. Helton,J.D. Johnson,W.L. Oberkampf,C.B. Storlie. Computer Methods in Applied Mechanics and Engineering . 2007 (37)
[4]  
Uncertainty-based sensitivity indices for imprecise probability distributions[J] . Jim W. Hall. Reliability Engineering and System Safety . 2006 (10)
[5]  
Uncertainty, probability and information-gaps[J] . Yakov Ben-Haim. Reliability Engineering and System Safety . 2004 (1)
[6]   Non-probabilistic Eigenvalue problem for structures with uncertain parameters via interval analysis [J].
Qiu, ZP ;
Chen, SH ;
Elishakoff, I .
CHAOS SOLITONS & FRACTALS, 1996, 7 (03) :303-308
[7]  
Essay on uncertainties in elastic and viscoelastic structures: From A. M. Freudenthal's criticisms to modern convex modeling[J] . I. Elishakoff. Computers and Structures . 1995 (6)
[8]   UPPER AND LOWER PROBABILITIES INDUCED BY A MULTIVALUED MAPPING [J].
DEMPSTER, AP .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (02) :325-&