基于垂直数据分布的关联规则高效发现算法

被引:17
作者
欧阳为民
蔡庆生
机构
[1] 安徽大学计算中心!合肥
[2] 中国科学技术大学计算机系!合肥
关键词
关联规则; 频繁项目集; 等价类;
D O I
10.13328/j.cnki.jos.1999.07.015
中图分类号
TP311 [程序设计、软件工程];
学科分类号
081202 ; 0835 ;
摘要
文章分析了在KDD研究中现有的关联规则发现算法关于频繁项目集的生成与测试方法,提出了一种新的基于垂直数据分布的关联规则发现算法.该算法无需复杂的Hash 数据结构,仅需对整个数据库作两次遍历,从而既方便了实现,又提高了效率
引用
收藏
页码:754 / 760
页数:7
相关论文
共 7 条
[1]  
Dynamic itemset counting and implication rules for market basket data. Brin S,Motwani R,Ullman J et al. In:Proceedings of ACM SIGMOD Conference on Management of Data . 1997
[2]  
Mining association rules between sets of items in large databases.In: Proceedings of 1993 ACM-SIGMOD International Conference on Management of Data. Agrawal R,Imielinski T,Swami A. Washington, D. C . 1993
[3]  
An efficientalgorithm for m ining association rules in large databases. Savasere A,Om iecinskiE,Navathe S. Pro-ceedings of1995 InternationalConference on Very Large Databases . 1995
[4]  
Fastdiscovery ofassociation rules. AgrawalR,MannilaH,SrikantRetal. Advances in Knowledge Discovery and Data Mining . 1996
[5]  
Fastalgorithm form ining association rules. AgrawalR,SrikantR. Proceedings of1994 InternationalConference onVery Large Databases . 1994
[6]  
An effective Hash based algorithm for mining association rules. Park J S,Chen M,Yu P S. In: Proceedings of 1995 ACM SIGMOD International Conference on Management of Data . 1995
[7]  
Finding interesting rules from large sets of discovered association rules. Klemettinen M,Mannila H,Ronkainen P et al. In: Proceedings of the 3rd International Conference on Information and Knowledge Management . 1994