基于GF-1卫星数据监测灌区灌溉面积方法研究——以东雷二期抽黄灌区为例

被引:19
作者
宋文龙 [1 ,2 ]
李萌 [1 ,2 ,3 ]
路京选 [1 ,2 ]
卢奕竹 [1 ,2 ]
史杨军 [4 ]
贺海川 [4 ]
机构
[1] 中国水利水电科学研究院
[2] 水利部防洪抗旱减灾工程技术研究中心
[3] 首都师范大学资源环境与旅游学院
[4] 渭南市东雷二期抽黄工程管理局
基金
国家重点研发计划;
关键词
灌溉面积; 种植强度; GF-1卫星数据; 光谱匹配; OTSU; 东雷二期抽黄灌区;
D O I
10.13243/j.cnki.slxb.20190258
中图分类号
S127 [遥感技术在农业上的应用]; S274 [灌溉制度与管理];
学科分类号
082804 ; 0815 ; 082802 ;
摘要
由于田块破碎、灌区信息化水平不高、土壤墒情反演困难等原因,在我国开展较高精度灌溉面积遥感监测依然面临很多困难。基于GF-1较高空间分辨率卫星数据,通过光谱匹配方法像元尺度应用,并引入OTSU自适应阈值算法,构建了高分辨率灌溉面积遥感监测新方法。选择我国西北干旱半干旱区典型渠灌灌区即东雷二期抽黄灌区为研究区,对其2018年的主要粮食作物种植强度及其灌溉面积开展了遥感识别提取研究。结果表明,东雷二期抽黄灌区灌溉面积为81 571.58 hm2,其中双季轮作(小麦与玉米轮作)灌溉面积为40 335.88 hm2,单季小麦灌溉面积为15 276.94 hm2,单季玉米灌溉面积为14 059.14 hm2;各灌溉子系统灌溉面积由大到小排序依次是流曲、孙镇、兴镇、荆姚、刘集、蒲城和大荔;通过野外采样精度验证,结果总体精度为88.27%(Kappa系数为0.8308),与国际水管理研究所灌溉数据产品相比,能更有效识别小田块灌溉分布及建设用地信息,在作物种植强度及其灌溉面积分布方面更符合我国实际情况,可为干旱监测预警、灌溉面积监测、灌溉用水效益评估等提供技术保障。
引用
收藏
页码:854 / 863
页数:10
相关论文
共 12 条
[1]  
Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images[J] . Yuting Zhou,Xiangming Xiao,Yuanwei Qin,Jinwei Dong,Geli Zhang,Weili Kou,Cui Jin,Jie Wang,Xiangping Li.International Journal of Applied Earth Observatio . 2016
[2]  
Wheat yield prediction using machine learning and advanced sensing techniques[J] . X.E. Pantazi,D. Moshou,T. Alexandridis,R.L. Whetton,A.M. Mouazen.Computers and Electronics in Agriculture . 2016
[3]  
Automated annual cropland mapping using knowledge-based temporal features[J] . Fran?ois Waldner,Guadalupe Sepulcre Canto,Pierre Defourny.ISPRS Journal of Photogrammetry and Remote Sensin . 2015
[4]  
Exploiting the multi-angularity of the MODIS temporal signal to identify spatially homogeneous vegetation cover: A demonstration for agricultural monitoring applications[J] . Gregory Duveiller,Raul Lopez-Lozano,Alessandro Cescatti.Remote Sensing of Environment . 2015
[5]  
Global land cover mapping at 30<ce:hsp sp="0.25"/>m resolution: A POK-based operational approach[J] . Jun Chen,Jin Chen,Anping Liao,Xin Cao,Lijun Chen,Xuehong Chen,Chaoying He,Gang Han,Shu Peng,Miao Lu,Weiwei Zhang,Xiaohua Tong,Jon Mills.ISPRS Journal of Photogrammetry and Remote Sensing . 2014
[6]  
Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points[J] . Yang Shao,Ross S. Lunetta.ISPRS Journal of Photogrammetry and Remote Sensing . 2012
[7]  
Irrigated areas of India derived using MODIS 500 m time series for the years 2001–2003[J] . V. Dheeravath,P.S. Thenkabail,G. Chandrakantha,P. Noojipady,G.P.O. Reddy,C.M. Biradar,M.K. Gumma,M. Velpuri.ISPRS Journal of Photogrammetry and Remote Sensing . 2009 (1)
[8]  
Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium[J] . Prasad S. Thenkabail,Chandrashekhar M. Biradar,Praveen Noojipady,Venkateswarlu Dheeravath,Yuanjie Li,Manohar Velpuri,Muralikrishna Gumma,Obi Reddy P. Gangalakunta,Hugh Turral,Xueliang Cai,Jagath Vithanage,Mitchell A. Schull,Rishiraj Dutta.International Journal of Remote Sensing . 2009 (14)
[9]   Designing of the perpendicular drought index [J].
Ghulam, Abduwasit ;
Qin, Qiming ;
Zhan, Zhiming .
ENVIRONMENTAL GEOLOGY, 2007, 52 (06) :1045-1052
[10]   Resolution dependent errors in remote sensing of cultivated areas [J].
Ozdogan, Mutlu ;
Woodcock, Curtis E. .
REMOTE SENSING OF ENVIRONMENT, 2006, 103 (02) :203-217