船舶横摇运动的非线性振动与混沌

被引:10
作者
欧阳茹荃
朱继懋
机构
[1] 上海交通大学船舶与海洋工程学院!上海
关键词
船舶横摇,分岔,混沌胞映射法;
D O I
10.16076/j.cnki.cjhd.1999.03.010
中图分类号
U661.3 [船舶动力学];
学科分类号
082401 ;
摘要
本文针对船舶非线性横摇运动模型,以波浪尺度为变参数,运用平均化方法和范德坡变换,确定系统的振动解随参数变化的定性情况;然后通过数值积分和胞映射相结合的方法,确定系统的多种形式的振动解。可以看到胞映射法能灵活地处理各种不同形式的吸引子,如周期解,各阶亚谐解乃至混沌吸引子并能方便快速地求解。横摇运动的大量非线性现象,如吸引子共存,对称性破缺,倍周期分岔等现象都被观察到。文中还给出了由一系列倍周期分岔导致的混沌运动。
引用
收藏
页码:334 / 340
页数:7
相关论文
共 7 条
[1]  
A M odified Interpolated Cell M apping Method. M Ge and S C Lee. J. of Sound and Vibr . 1997
[2]   MELNIKOV ANALYSIS FOR A SHIP WITH A GENERAL ROLL-DAMPING MODEL [J].
BIKDASH, M ;
BALACHANDRAN, B ;
NAYFEH, A .
NONLINEAR DYNAMICS, 1994, 6 (01) :101-124
[3]   Responses of a non-linearly coupled pitch-roll ship model under harmonic excitation [J].
Pan, RG ;
Davies, HG .
NONLINEAR DYNAMICS, 1996, 9 (04) :349-368
[4]  
Dom ains of Attaction of System of Nonlinearly Coupled Ship Motions by Sim ple Cell Mapping. K Lee. Trans. of the A S M E . 1992
[5]  
Application of Global M ethods for Analyzing Dynam ical System s to Ships Rolling Motion and Capsizing. M Falzarano,S W Shaw and A W Troesh. Int. J. of Bifur. and Chaos . 1992
[6]  
Poincarelike Sim ple Cell M apping for Nonlinear Dynam ical System s. Levitas T W eller and J Singer. J.of Sound and Vibr . 1994
[7]  
Nonlinear Oscillations, Bifurcations and Chaos in a M ultipoint M ooring System w ith a Geom etric Nonlinearity. Gottlieb and Solom om C S Yim. Appl. Ocean Res . 1992