基于级联卷积网络的自然场景下的车牌检测

被引:5
作者
闫鹏
牛常勇
范明
机构
[1] 郑州大学信息工程学院
关键词
车牌检测; 卷积网络; 级联分类器; 自然场景; 误报率;
D O I
10.16208/j.issn1000-7024.2014.12.043
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
为有效解决自然场景下车牌检测的分类效率和分类准确率之间的矛盾,提出一种鲁棒的快速车牌检测方法。以整个车牌作为训练和检测的基本单位,直接使用卷积网络作为检测器,级联多个卷积网络,对自然场景下的车牌进行检测。通过引入卷积网络作为基本的学习子单元,进一步把多个子单元组织成级联结构,满足了自然场景下的车牌检测对检测准确率和检测效率的要求。在现实数据上的实验结果表明,级联卷积网络在保证较低误报率的同时具有较高的检测率和检测效率。
引用
收藏
页码:4296 / 4301
页数:6
相关论文
共 14 条
[1]   基于边缘颜色对的车牌定位新方法 [J].
李文举 ;
梁德群 ;
张旗 ;
樊鑫 .
计算机学报, 2004, (02) :204-208
[2]   Robust real-time face detection [J].
Viola, P ;
Jones, MJ .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 57 (02) :137-154
[3]  
LeCun Y,Kavukcuoglu K,Farabet C.Convolutional networks and applications in vision. IEEE International Symposium on Circuits and Systems . 2010
[4]  
Frome A,Cheung G,Abdulkader A. et al.Large-scale privacy protection in googlestreet view. IEEE International Conference on Computer Vision . 2009
[5]  
Yann LeCun,,Fu Jie Huang,Léon Bottou.Learning Methods for Generic Object Recognition with Invariance to Pose and Lighting. IEEE Conference on Computer Vision and Pattern Recognition . 2004
[6]  
Christophe Garcia,Manolis Delakis.Convolutional Face Finder: A Neural Architecture for Fast and Robust Face Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2004
[7]  
Chellapilla K,Shilman M,Simard P.Optimally combining a cascade of classifiers. Proceedings of SPIE the International Society for Optical Engineering . 2006
[8]  
C. -N.E. Anagnostopoulos,I. E. Anagnostopoulos,I. D. Psoroulas,V. Loumos,E. Kayafas.License Plate Recognition From Still Images and Video Sequences: A Survey. IEEE Transactions on Intelligent Transportation Systems . 2008
[9]  
The ministry of public security of the people’’s republic of China.License Plate of Motor Vehicle of the People’’s Republic of China. GA 36-2007 .
[10]  
Patrice Y. Simard,Dave Steinkraus,John Platt.Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis. International Conference on Document Analysis and Recognition (ICDAR) . 2003