一种新的SAR图像快速自适应去斑算法

被引:1
作者
李应岐
何明一
机构
[1] 西北工业大学电子信息学院信息获取与处理陕西省重点实验室
关键词
Contourlet变换; 合成孔径雷达图像; 斑点; 自适应性收缩估计;
D O I
暂无
中图分类号
TN957.5 [雷达接收设备];
学科分类号
080904 ; 0810 ; 081001 ; 081002 ; 081105 ; 0825 ;
摘要
针对SAR图像斑点噪声的滤除,提出了一种新的基于Countourlet变换的快速自适应性噪声去除方法。鉴于SAR图像的Countourlet系数主要取决于斑点噪声和信号腐化,且呈现出很强的非高斯分布特性,据此,首先建立了SAR图像Countourlet系数的高斯混合分布解析模型;然后用每个系数的邻域系数通过估计其去斑收缩因子来实现系数的自适应收缩;最后对Lee滤波、Foster滤波、Gamma滤波、小波、Curvelet和Contourlet变换的去斑性能进行了比较分析。实验结果表明,该新方法在保留细节和锐化图像的同时,能强有力地抑制斑点噪声。
引用
收藏
页码:214 / 218
页数:5
相关论文
共 11 条
[1]  
The contourlet transform for image de-noising using cycle spinning. Eslami R,Radha H. Asilomar Conference on Signals, Systems, and Computers . 2003
[2]  
Denoising of Noise Speckle in Radar Image. Tan Hong Sern. . 2001
[3]  
Model-based despeckling and informationextraction from SAR images. Walessa M,Datcu M. IEEE Transactions on Geoscienceand Remote Sensing . 2000
[4]  
Directional multiscale statistical modeling ofimages. Po D D-Y,Do M N. Proceedings of SPIE Conference on WaveletApplications in Signal and Image Processing X . 2003
[5]  
The Contourlet transform:an efficientdirectional multiresolution image representation. Do M N,Vetterli M. IEEETransactions on Image Processing . 2005
[6]  
Smoothing of coefficients in waveletdomain for speckle reduction in synthetic aperture radar images. Matriani M,Giraldez A E. International Journal on Graphics,Vision and Image Processing . 2005
[7]  
Image denoising usingscale mixtures of Gaussian in wavelet domain. Portilla J,Strela V,Wainwright M,et al. IEEE Transactionson Image Processing . 2003
[8]  
Adaptive wavelet thresholding forimage denoising and Compression. Chang S G,Yu B,Vetterli M. IEEE Transactions on ImageProcessing . 2000
[9]  
Speckle removal from SAR images in the undecimated wavelet domain. Argenti,F,Alparone,L. IEEE Transactions on Geoscience Electronics . 2002
[10]  
The curvelet transform for image denoising. Starck J L,Candes E J,Donoho D L. IEEE Transactions on Image Processing . 2002