一类三自由度碰撞振动系统的Poincaré映射的对称性,分岔及混沌

被引:4
作者
乐源
谢建华
机构
[1] 西南交通大学应用力学与工程系
关键词
碰撞振动系统; 对称周期n-2运动; Poincaré映射; 分岔; 混沌;
D O I
10.15961/j.jsuese.2008.01.001
中图分类号
O313.4 [碰撞理论(撞击理论)]; O415.5 [混沌理论];
学科分类号
080101 ; 070201 ;
摘要
考虑了一类具有对称刚性约束的三自由度碰撞振动系统。建立了系统的Poincaré映射,并导出了Poincaré映射的对称性。把映射不动点的稳定性与分岔理论应用于该系统,分析表明Poincaré映射的对称性完全抑制了对称周期n-2运动的周期倍化分岔,Hopf-flip分岔和pitchfork-flip分岔,并证明了两个反对称的周期n-2运动具有相同的稳定性。数值模拟得到了对称周期n-2运动的音叉分岔,Hopf分岔和Hopf-Hopf分岔。此外,通过Poincaré截面投影相图的形式研究了由音叉分岔通向混沌的路径。
引用
收藏
页码:27 / 31
页数:5
相关论文
共 19 条
[1]  
Periodically forced linear oscillatorwith impacts:Chaos and Long-Period Motions. Shaw S W,Holmes P J. PhysicalReview Letters . 1989
[2]  
The dynamics of a harmonically excited systemhaving rigid amplitude constraints,Part1:Subharmonic mo-tions and local bifurcations. Shaw S W. Journal of Applied Mechanics . 1985
[3]  
The dynamics of a harmonically excited systemhaving rigid amplitude constraints,Part 2:Chaotic motionsand global bifurcations. Shaw S W. Journal of Applied Mechanics . 1985
[4]  
Hopf-Hopf bifurcation and in-variant torus T2 of a vibro-impact system. Xie Jianhua,Ding Wangcai. InternationalJournal of Non-Linear Mechanics . 2005
[5]  
Estimation of the largest Lyapunov expo-nent in systems with impacts. Stefanski Andrzej. Chaos,Solitons and Frac-tals . 2000
[6]  
Controlling chaotic orbits inmechanical systems with impacts. de Souza S L T,Caldas I L. Chaos,Solitons andFractals . 2004
[7]  
Impact:The theory and physical behaviourof colliding solids. Goldsmith W. . 1960
[8]  
Elements of applied bifurcation theory. Kuznetsov Y A. . 1998
[9]  
The dynamics of repeated impacts with a sinusoidally vibrating table. P. J. Holmes. Journal of Sound and Vibration . 1982
[10]   多自由度含间隙振动系统周期运动的Hopf-pitchfork余维二分岔 [J].
罗冠炜 ;
褚衍东 ;
谢建华 .
工程力学, 2006, (01) :99-106