Research into a Feature Selection Method for Hyperspectral Imagery Using PSO and SVM

被引:8
作者
YANG Hua-chao
机构
基金
中国国家自然科学基金;
关键词
hyperspectral remote sensing; particle swarm optimization; support vector machine; feature extraction;
D O I
暂无
中图分类号
TH744.1 [];
学科分类号
0803 ;
摘要
Classification and recognition of hyperspectral remote sensing images is not the same as that of conventional multi-spectral remote sensing images. We propose,a novel feature selection and classification method for hyperspectral images by combining the global optimization ability of particle swarm optimization (PSO) algorithm and the superior classification performance of a support vector machine (SVM). Global optimal search performance of PSO is improved by using a chaotic optimization search technique. Granularity based grid search strategy is used to optimize the SVM model parameters. Parameter optimization and classification of the SVM are addressed using the training date corre-sponding to the feature subset. A false classification rate is adopted as a fitness function. Tests of feature selection and classification are carried out on a hyperspectral data set. Classification performances are also compared among different feature extraction methods commonly used today. Results indicate that this hybrid method has a higher classification accuracy and can effectively extract optimal bands. A feasible approach is provided for feature selection and classifica-tion of hyperspectral image data.
引用
收藏
页码:473 / 478
页数:6
相关论文
共 9 条
[1]   基于Tabu搜索的高光谱影像特征选择 [J].
杨哲海 ;
张雅争 ;
宫大鹏 ;
李之歆 ;
韩建峰 .
海洋测绘, 2006, (04) :11-14
[2]   Radar Emitter Signal Recognition Using Wavelet Packet Transform and Support Vector Machines [J].
金炜东 ;
张葛祥 ;
胡来招 .
Journal of Southwest Jiaotong University, 2006, (01) :15-22
[3]   粒子群优化算法的惯性权值递减策略研究 [J].
陈贵敏 ;
贾建援 ;
韩琪 .
西安交通大学学报, 2006, (01) :53-56+61
[4]   基于GA的遥感图像目标SVM自动识别 [J].
郑春红 ;
焦李成 ;
郑贵文 .
控制与决策, 2005, (11) :14-17+22
[5]   支持向量机在分类中的应用 [J].
陆波 ;
尉询楷 ;
毕笃彦 ;
不详 .
中国图象图形学报 , 2005, (08) :94-100
[6]  
Classification using ASTER data and SVM algorithms;[J] . Guobin Zhu,Dan G. Blumberg.Remote Sensing of Environment . 2002 (2)
[7]   Choosing Multiple Parameters for Support Vector Machines [J].
Olivier Chapelle ;
Vladimir Vapnik ;
Olivier Bousquet ;
Sayan Mukherjee .
Machine Learning, 2002, 46 :131-159
[8]   Gradient-based optimization of hyperparameters [J].
Bengio, Y .
NEURAL COMPUTATION, 2000, 12 (08) :1889-1900
[9]  
Robust support vector method for hyperspectral data classification and knowledge discovery. G. Camps-Valls,L. Gomez-Chova,J. Calpe-Maravilla,J. D. Martin-Guerrero,E. Soria-Olivas,L. Alonso-Chorda,and J. Moreno. IEEE Trans. Geoscience Remote Sensing . 2004