排序博弈:合作博弈的新发展

被引:3
作者
顾燕红 [1 ]
唐国春 [2 ]
机构
[1] 深圳大学应用数学系
[2] 上海第二工业大学经济管理学院
关键词
社会发展模式; 纳什合作博弈模型; 排序博弈; 博弈机制; 算法;
D O I
暂无
中图分类号
O225 [对策论(博弈论)];
学科分类号
070105 ; 1201 ;
摘要
本文指出人类社会发展模式的巨变决定合作博弈理论研究和应用研究的必要性和紧迫性;简要综述以合作联盟内的任务分配不是决策变量为特征的合作博弈模型的研究成果;系统介绍由Nash(纳什)创立的把联盟内的任务分配作为决策变量的另一类两人合作Nash Bargaining Model(NBM,纳什博弈模型)及其Nash Bargaining Solution(NBS,纳什博弈解);强调排序博弈是NBM在管理学中的离散化发展;完整介绍此离散化方面开创性论文中全新的定义、改进的博弈模型、创新的博弈机制、求解博弈解(集)的精确算法;最后指出NBM的改进和离散化这两方面后续研究的几个重要方向。
引用
收藏
页码:1 / 6
页数:6
相关论文
共 27 条
[1]   最大完工时间排序的两人合作博弈 [J].
金霁 ;
顾燕红 ;
唐国春 .
上海第二工业大学学报, 2011, 28 (01) :14-17
[2]   Cooperation in Service Systems [J].
Anily, Shoshana ;
Haviv, Moshe .
OPERATIONS RESEARCH, 2010, 58 (03) :660-673
[3]   Competitive Two-Agent Scheduling and Its Applications [J].
Leung, Joseph Y. -T. ;
Pinedo, Michael ;
Wan, Guohua .
OPERATIONS RESEARCH, 2010, 58 (02) :458-469
[4]   Approximation algorithms for multi-agent scheduling to minimize total weighted completion time [J].
Lee, Kangbok ;
Choi, Byung-Cheon ;
Leung, Joseph Y. -T. ;
Pinedo, Michael L. .
INFORMATION PROCESSING LETTERS, 2009, 109 (16) :913-917
[5]  
A Bargaining Framework in Supply Chains: The Assembly Problem[J] . Mahesh Nagarajan,Yehuda Bassok.Management Science . 2008 (8)
[6]   Multi-agent single machine scheduling [J].
Agnetis, Alessandro ;
Pacciarelli, Dario ;
Pacifici, Andrea .
ANNALS OF OPERATIONS RESEARCH, 2007, 150 (01) :3-15
[7]   Some extended knapsack problems involving job partition between two parties [J].
Gu Y. ;
Chen Q. .
Applied Mathematics-A Journal of Chinese Universities, 2007, 22 (3) :366-370
[8]   Nash implementation and the bargaining problem [J].
Vartiainen, Hannu .
SOCIAL CHOICE AND WELFARE, 2007, 29 (02) :333-351
[9]   An axiomatization of the Nash bargaining solution [J].
de Clippel, Geoffroy .
SOCIAL CHOICE AND WELFARE, 2007, 29 (02) :201-210
[10]  
Multi-agent scheduling on a single machine to minimize total weighted number of tardy jobs[J] . T.C.E. Cheng,C.T. Ng,J.J. Yuan.Theoretical Computer Science . 2006 (1)