蚁群优化算法及其应用

被引:33
作者
胡小兵
黄席樾
机构
[1] 重庆大学自动化学院
[2] 重庆大学自动化学院 重庆
[3] 重庆大学数理学院
[4] 重庆
关键词
蚁群优化; 组合优化; 随机搜索; 启发式算法;
D O I
暂无
中图分类号
TP273.1 [];
学科分类号
080201 ; 0835 ;
摘要
蚂蚁算法是由意大利学者M.Dorigo等人提出的一种新型的模拟进化算法。该算法首先应用于旅行商问题并获得了极大的成功,其后,又被用于求解指派问题、Job-shop调度问题、图着色问题和网络路由问题等。实践证明,蚂蚁算法是一种鲁棒性强、收敛性好、实用性广的优化算法,但同时也存在一些不足,如收敛速度慢和容易出现停滞现象等。
引用
收藏
页码:81 / 85
页数:5
相关论文
共 8 条
[1]  
Qos Multicast Routing Based on Ant Algorithm in Internet. Lu Guoying,Liu Zemin. The Journal of China Universities of Posts ant Telecommunication. Dec . 2000
[2]  
Qos Multicast Routing Based on Ant Algorithm in Internet. LU Gruo-ying,Liu Ze-min. The Journal of China Universities of Posts and Telecommunications. Dec . 2000
[3]  
The ant system: Optimization by a colony of cooperating agents. M Dorigo,VManiezzo and A Colorni. IEEE Transactions on Systems Man and Cybernetics . 1996
[4]  
Ant system for job- shop scheduling. A Colorni,M Dorigo,V Maniezzo,and M Trubian. Belgian Journal of Operations Research,Statistics and Computer Science (JORBEL) . 1994
[5]  
A New Rank Based Version of the Ant System - A Computational Study. B Bullnheimer,R F Hartl,and C Strauss. Central European Journal for Operations Research and Economics . 1998
[6]  
Ants can color graphs. D Costa and A Hertz. Journal of the Operational Research Society . 1997
[7]  
Ants and reinforcement learning: A case study in routing in dynamic networks. D Subramanian,P Druschel,and J Chen. In Proceedings of IJCAI- 97, International Joint Conference on Artificial Intelligence, Morgan Kaufmann . 1997
[8]  
Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. M Dorigo and L M Gambardella. IEEE Transactions on Evolutionary Computations . 1997