一种基于HOG-PCA的高效图像分类方法

被引:8
作者
李林 [1 ,2 ]
吴跃 [1 ]
叶茂 [1 ]
机构
[1] 电子科技大学计算机科学与工程学院
[2] 四川托普信息技术职业学院
关键词
方向梯度直方图; 主成分分析; 最小二阶范数; 图像分类; 图像特征;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
为了更有效地提高图像分类性能和准确率,提出一种基于HOG-PCA的高效图像分类方法。首先通过提取方向梯度直方图(HOG)特征并作特征白化,再随机下采样进行尺度统一,随后采用主成分分析(PCA)进行特征映射,最后用最小二阶范数判定进行最近邻分类。实验中,采用C++,基于OpenCV和Darwin实现了提出的方法,并在Pascal 2012数据集上进行测试,比较了该方法和BOW-SVM方法的准确率和运行性能。实验证明,提出的方法具有更高的准确率和更好的运行性能。
引用
收藏
页码:3476 / 3479
页数:4
相关论文
共 17 条
[1]  
Histograms of oriented gradients for human detection. N. Dalal,B. Triggs. IEEEComputer Society Conference on Computer Vision and Pattern Recognition . 2005
[2]  
Learning multiple layers of features from tiny images. A.Krizhevsky,G.Hinton. . 2009
[3]  
The Relationship Between Precision-Recall andROC Curves. Jesse Davis,Mark Goadrich. International Conference on Machine Learning . 2006
[4]  
Wiley Online Library. JOLLIFFE I. . 2005
[5]  
Eigenfaces vs. fisherfaces: recognition using class specific linear projection. Belhumeur, Peter N,Hespanha, Joao P,Kriegman, David J. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1997
[6]  
Visual categorization with bags of keypoints. Gabriella Csurka,Christopher R. Dance,Lixin Fan,et al. Workshop on Statistical Learning in Computer Vision, ECCV . 2004
[7]   改进的HOG和Gabor,LBP性能比较 [J].
向征 ;
谭恒良 ;
马争鸣 .
计算机辅助设计与图形学学报, 2012, (06) :787-792
[8]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338
[9]  
Speeded-Up Robust Features (SURF)[J] . Herbert Bay,Andreas Ess,Tinne Tuytelaars,Luc Van Gool. &nbspComputer Vision and Image Understanding . 2007 (3)
[10]   A survey of image classification methods and techniques for improving classification performance [J].
Lu, D. ;
Weng, Q. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (05) :823-870