该文提出一种映射方法,把单部网络变换成二部图网络.针对得到的二部图网络,在信息论的框架下,提出了一种基于信息瓶颈的社区发现方法.该方法通过寻找网络的最优压缩表示来发现网络的社区结构,最优压缩表示尽可能多地保留原始网络的拓扑特征.在真实数据集和计算机产生的数据集上的实验表明,该方法能够有效地发现网络的社区结构.另外,对于有向网络的社区发现,现有方法忽略有向网络中边的方向而作为无向网络来处理,损失了有向的网络的方向信息,文中提出的社区发现方法能够很好地解决这一问题,并能从有向网络中挖掘出一些现有方法无法发现的知识,这一特点使得该文的方法比现有方法更适用于解决像WWW这样的有向网络.同时,真实世界的许多网络本身就是二部图网络,相对于现有的社区发现方法,文中的方法可以直接应用于这类网络.