“教与学”优化算法研究综述

被引:36
作者
拓守恒
雍龙泉
邓方安
机构
[1] 陕西理工学院数学与计算机科学学院
关键词
“教与学”优化算法; “教”阶段; “学”阶段;
D O I
暂无
中图分类号
TP301.6 [算法理论];
学科分类号
摘要
简要分析了群智能优化算法的研究现状,重点对"教与学"优化算法作了详细的描述,并分析了"教与学"算法的性能及其优缺点;随后介绍了几种改进的"教与学"优化算法,对"教与学"优化算法的应用研究情况进行了论述。最后,说明了目前"教与学"优化算法中存在的问题,并指出"教与学"优化算法未来的研究方向。
引用
收藏
页码:1933 / 1938
页数:6
相关论文
共 8 条
[1]   微型热电制冷器制造技术及其性能 [J].
王小群 ;
徐俊 .
制冷学报, 2007, (06) :41-46
[2]   Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm [J].
Rao, R. Venkata ;
Patel, Vivek .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (03) :1147-1162
[3]  
Parameter optimization of modern machining processes using teaching–learning-based optimization algorithm[J] . R. Venkata Rao,V.D. Kalyankar.Engineering Applications of Artificial Intelligence . 2013 (1)
[4]  
Teaching–learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems[J] . R.V. Rao,V.J. Savsani,J. Balic.Engineering Optimization . 2012 (12)
[5]  
A note on teaching–learning-based optimization algorithm[J] . Information Sciences . 2012
[6]  
Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems[J] . R.V. Rao,V.J. Savsani,D.P. Vakharia.Computer-Aided Design . 2011 (3)
[7]  
Test suite for the specialis-sue of soft computing on scalability of evolutionary algorithms and othermetaheuristics for large scale continuous optimization problems .2 HERRERA F,LOZANO M,MOLINA D. http://sci2s.ugr.es/eamhco/CFP.php . 2010
[8]  
An Idea Based On Honey Bee Swarm For Numerical Optimization .2 Karaboga. D. Technical Report-TR06 . 2005