基于双线性混合模型的高光谱图像非线性光谱解混

被引:7
作者
杨斌 [1 ,2 ,3 ]
王斌 [1 ,2 ,3 ]
吴宗敏 [4 ]
机构
[1] 复旦大学电磁波信息科学教育部重点实验室
[2] 北京师范大学地表过程与资源生态国家重点实验室
[3] 复旦大学信息学院智慧网络与系统研究中心
[4] 复旦大学数学科学学院
关键词
高光谱遥感; 非线性光谱解混; 双线性混合模型; 丰度估计; 单形体;
D O I
暂无
中图分类号
TP751 [图像处理方法];
学科分类号
摘要
高光谱遥感图像的非线性光谱解混能弥补线性方法难以解释复杂场景中非线性混合效应的不足,而双线性混合模型及算法是其研究的热点.提出了一种基于双线性混合模型几何特性的光谱解混算法.通过将模型中的非线性混合项表示为一个融合了共同非线性效应的额外端点的线性贡献,使复杂的双线性混合模型求解转化为简单的线性解混问题.然后结合传统的线性解混算法直接迭代估计正确的丰度.模拟和真实遥感图像数据的实验结果表明,与其它相关解混方法相比,该算法能较好地克服共线性效应以及拟合优化过多参数对双线性混合模型求解造成的不利影响,同时提高了解混的精度和速度.
引用
收藏
页码:631 / 641
页数:11
相关论文
共 14 条
  • [1] Two-Step Constrained Nonlinear Spectral Mixture Analysis Method for Mitigating the Collinearity Effect
    Ma, Lei
    Chen, Jin
    Zhou, Yuan
    Chen, Xuehong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (05): : 2873 - 2886
  • [2] A Novel Approach for Efficient p-Linear Hyperspectral Unmixing
    Marinoni, Andrea
    Gamba, Paolo
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2015, 9 (06) : 1156 - 1168
  • [3] A Review of Nonlinear Hyperspectral Unmixing Methods
    Heylen, Rob
    Parente, Mario
    Gader, Paul
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 1844 - 1868
  • [4] A Comparison of Nonlinear Mixing Models for Vegetated Areas Using Simulated and Real Hyperspectral Data
    Dobigeon, Nicolas
    Tits, Laurent
    Somers, Ben
    Altmann, Yoann
    Coppin, Pol
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 1869 - 1878
  • [5] Abundance Estimation for Bilinear Mixture Models via Joint Sparse and Low-Rank Representation
    Qu, Qing
    Nasrabadi, Nasser M.
    Tran, Trac D.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (07): : 4404 - 4423
  • [6] A Bilinear-Bilinear Nonnegative Matrix Factorization Method for Hyperspectral Unmixing
    Eches, Olivier
    Guillaume, Mireille
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (04) : 778 - 782
  • [7] Nonlinear Unmixing of Hyperspectral Data Using Semi-Nonnegative Matrix Factorization
    Yokoya, Naoto
    Chanussot, Jocelyn
    Iwasaki, Akira
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (02): : 1430 - 1437
  • [8] Nonlinear Unmixing of Hyperspectral Images
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    Richard, Cedric
    Bermudez, Jose Carlos M.
    McLaughlin, Stephen
    Hero, Alfred O.
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) : 82 - 94
  • [9] Supervised Nonlinear Spectral Unmixing Using a Postnonlinear Mixing Model for Hyperspectral Imagery
    Altmann, Yoann
    Halimi, Abderrahim
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (06) : 3017 - 3025
  • [10] Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches[J] . José M. Bioucas-Dias,Antonio Plaza,Nicolas Dobigeon,Mario Parente,Qian Du,Paul Gader,Jocelyn Chanussot.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing . 2012 (2)