非等步长GM(1,1)模型及其在大堤沉降监测的应用

被引:16
作者
刘明波 [1 ]
田林亚 [2 ]
孙和平 [1 ]
机构
[1] 中国科学院测量与地球物理研究所
[2] 河海大学土木工程学院
关键词
非等步长; GM(1,1)模型; 1-WAGO; 沉降监测;
D O I
10.19349/j.cnki.issn1006-7949.2006.03.015
中图分类号
TU196 [观测];
学科分类号
0814 ;
摘要
针对非等步长数据,传统GM方法是构造等步长序列,生成1-AGO序列,再建立等步长GM(1,1)模型。考虑到变形观测序列非等步长特性,以相邻观测时间间隔为权,直接生成1-WAGO序列,建立非等步长GM(1,1)模型。将GM(1,1)模型应用于堤防工程沉降观测分析与预报,得到了有益的结论。
引用
收藏
页码:58 / 60
页数:3
相关论文
共 9 条
[1]   非等时距GM(1,1)直接模型及其在材料试验数据处理中的应用 [J].
郭丽萍 ;
孙伟 ;
郑克仁 ;
陈波 .
东南大学学报(自然科学版), 2004, (06) :833-837
[2]   时间非等步长灰色模型预测桩基承载力 [J].
唐军峰 ;
唐雪梅 ;
胡祥昭 .
岩土工程技术, 2004, (05) :238-241
[3]   高速公路软土地基沉降的灰色预测 [J].
祝鸿 ;
陈甦 ;
张斌 ;
顾欢达 ;
王月香 .
苏州科技学院学报(工程技术版), 2004, (03) :27-33
[4]   高速公路软土地基沉降变形监测分析与预报附视频 [J].
汪祖民 .
苏州科技学院学报(工程技术版), 2004, (02) :34-40
[5]   非等间距序列建模过程中存在的问题及改进 [J].
王作雷 ;
蔡国梁 .
大学数学, 2003, (02) :46-50
[6]   深基坑支护结构位移的非等步长灰色模型预测 [J].
李磊 ;
姜志强 .
勘察科学技术, 2001, (05) :16-19
[7]   一类非等间隔序列灰色建模方法的改进 [J].
郭原 ;
潘惠英 ;
郭文扬 .
环境监测管理与技术, 1997, (04) :33-35+43
[8]   非等间距GM(1,1)模型及其在疲劳试验数据处理和疲劳试验在线监测中的应用附视频 [J].
罗佑新,周继荣 .
机械强度, 1996, (03) :60-63
[9]  
刘思峰等著.灰色系统理论及其应用[M].北京:科学出版社,2004