一种启发式线性回归损失函数选取方法

被引:2
作者
张祎
机构
[1] 雅安职业技术学院机电与信息工程系
关键词
损失函数; 支持向量机; 平方损失函数; 参数选择; VC维;
D O I
暂无
中图分类号
O212.1 [一般数理统计];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
损失函数度量回归分析中,信息损失和错误的程度是机器学习算法最小化的目标函数。本文研究在有限数据集上线性回归分析的损失函数选取方法。对于给定的噪声密度,存在一个满足一致性条件的最优损失函数(如噪声密度满足高斯分布,则常见的最优损失函数是平方损失函数)。但在实际应用中,噪声密度往往是不确定的,且训练样本集有限。一些统计信息可用来对有限信息环境下的损失函数进行选取,但这些统计信息是基于一些一致性假设且在有限的样本集上不一定有效。针对这些问题,借鉴Vapnik的ε-insensitive损失函数,提出一种启发式的基于样本数目及噪声方差的参数设置方法。实验结果表明,与常用的平方损失函数及Huber的least-modulus loss相比,本文的损失函数性能更健壮且预测效率更准确。
引用
收藏
页码:1 / 4
页数:4
相关论文
共 14 条
[1]  
Linear Regression Analysis. Seber G A F,Lee A J. . 2012
[2]  
Pattern Recognition and Machine Learning. Bishop C M. . 2006
[3]  
Learning from Data:Concepts,Theory,and Methods. Cherkassky V,Mulier F M. . 2007
[4]  
A unified bias-variance decomposition for zero-one and squared loss. Domingos P. Proceedings of the 17th National Conference on Artificial Intelligence and 12th Conference on Innovative Applications of Artificial Intelligence . 2000
[5]  
Solution of the minimum modulus problem for covering systems. Hough B. Annals of Mathematics . 2015
[6]  
Introduction to Machine Learning. Alpaydin E. . 2014
[7]  
Activized learning with uniform classification noise. Yang Liu,Hanneke S. Proceedings of the 20th International Conference on Machine Learning . 2013
[8]   Model complexity control and statistical learning theory [J].
Vladimir Cherkassky .
Natural Computing, 2002, 1 (1) :109-133
[9]   A Firm Foundation for Private Data Analysis [J].
Dwork, Cynthia .
COMMUNICATIONS OF THE ACM, 2011, 54 (01) :86-95
[10]  
LIBSVM[J] . Chih-Chung Chang,Chih-Jen Lin. &nbspACM Transactions on Intelligent Systems and Technology (TIST) . 2011 (3)