非线性GARCH模型在中国股市波动预测中的应用研究

被引:46
作者
刘国旗
机构
关键词
中国股票市场; 波动预测; 非线性GARCH模型;
D O I
10.19343/j.cnki.11-1302/c.2000.01.010
中图分类号
F224.0 [数量经济学];
学科分类号
020209 ;
摘要
ThispaperstudiestheperformanceoftheGARCHmodelandtwoofitsnon linear modificationstoforecastChina’sweeklystockmarketvolatility .Themodelsarethe QuadraticGARCHandtheGlosten ,JagannathanandRunklemodelswhichhavepro posedtodescribetheoftenobservednegativeskewnessinstockmarketindices.Wefind thattheQGARCHmodelisbestwhentheestimationsampledoesnotcontainextreme observationssuchasthestockmarketcrashandthattheGJRmodelcannotberecom mendedforforecasting .
引用
收藏
页码:49 / 52
页数:4
相关论文
共 9 条
[1]  
Alternative models for conditional stock market volatility. Pagan A R,Schwert G W. Journal of Econometrics . 1990
[2]  
Conditional heteroskedasticity in asset returns: a new approach. Nelson D. Econometrica . 1990
[3]  
Generalized autogressive conditional heteroskedasticity. Bollerslev T. Journal of Econometrics . 1986
[4]  
Forecasting stock market prices:Lessons for forecasters. Granger C W J. International Journal of Forecasting . 1992
[5]  
Quadratic ARCH models. Sentana E. The Review of Economic Studies . 1995
[6]  
Stock market volatility and the information content of stock index options. Day T,Lewis C. Journal of Econometrics . 1992
[7]  
Autogressive conditional heteroskedasticity with estimates of the variance of UK inflation. Engle R F. Econometrica . 1982
[8]  
On the relation between the expected value and the volatility of nominal excess return on stocks. Glosten L,Jagannathan R,Runkle D. The Journal of Finance . 1992
[9]  
ARCH modelling in finance: a review of the theory and empirical evidence. Bollerslev T,Chou R,Kroner K. Journal of Econometrics . 1992