基于数据挖掘的电力系统中长期负荷预测新方法

被引:13
作者
崔旻
顾洁
机构
[1] 上海交通大学电气工程系
[2] 上海交通大学电气工程系 上海
关键词
电力系统; 中长期负荷预测; 数据挖掘; 聚类分析; 不完备数据分析;
D O I
暂无
中图分类号
TM715 [电力系统规划];
学科分类号
080802 ;
摘要
中长期电力系统负荷预测受大量不确定因素的影响,研究表明聚类方法能够将各种影响因素综合引入预测模型。所提出的改进聚类算法结合了层次方法中的变色龙(Chameleon)法与基于密度算法的优点,实现了最优聚类,同时还弥补了单纯层次法无法对复杂形状数据聚类和算法不可逆的缺点。算法在进行聚类前以不完备数据分析补全法算法(ROUSTIDA)为数据处理前导,确保了聚类所需历史数据的准确性和完备性。实践证明该算法具有计算速度快、预测精度高、预测误差变化小等优点。尤其在影响因素繁多、历史数据不完整或不准确时,改进算法更能体现出优越性。
引用
收藏
页码:18 / 21
页数:4
相关论文
共 4 条
[1]   一种快速聚类高维数据的算法研究 [J].
颜雪松 ;
蔡之华 .
计算机工程, 2003, (01) :131-132
[2]   一种基于粗集理论不完备数据的改进算法 [J].
张振华 ;
刘文奇 .
计算机工程与科学, 2002, (04) :41-42+67
[3]  
数据挖掘[M]. 机械工业出版社 , (加)JiaweiHan, 2001
[4]  
Rough集理论与知识获取[M]. 西安交通大学出版社 , 王国胤编著, 2001