研究电力负荷预测问题,针对精确测量电力负荷,由于影响电力负荷因素之间存在着非线性,因素之间存在冗余信息,传统的数学模型在电力负荷预测中精度较低,为了有效提高电力负荷的预测精度,提出了一种主成分分析(PCA)和BP神经网络相结合的电力负荷预测方法。利用PCA对电力负荷的影响因素进行特征提取,以BP神经网络对经过PCA处理得到的新的变量进行训练建模,采用PCA-BP神经网络模型对河南某地区的电力负荷进行了仿真。结果表明,相对于参比模型,可有效地消除因素间的冗余信息,降低了BP神经网络的输入维数,简化了网络的结构,加快了学习速度,显著提高了电力负荷预测精度,证明提出的预测模型在电力负荷预测中是有效。