一种新的K-Means蚁群聚类算法

被引:7
作者
莫锦萍
陈琴
马琳
苏一丹
机构
[1] 广西大学计算机与电子信息学院
关键词
聚类; 蚁群算法; K-平均算法;
D O I
10.13657/j.cnki.gxkxyxb.2008.04.015
中图分类号
TP301.6 [算法理论];
学科分类号
摘要
针对蚁群聚类算法聚类质量不高的原因,使用K-M eans算法改进蚁群聚类规则,提出一种新的K-M eans蚁群聚类算法(KM-A n tC lust),并通过实验验证新算法的聚类效果。实验结果表明,新的算法可以明显提高聚类质量。
引用
收藏
页码:284 / 286
页数:3
相关论文
共 7 条
[1]  
Some Methods for Classification andAnalysis of Multivariate Observations. MacQueen,J. Proceedingsof the 5th Berkeley Symposium on MathematicalStatistics and Probability . 1967
[2]  
Web sessions clustering with artificial ants colonies.. Nicolas Labroche,Nicolas Monmarché,Gilles Venturini. http://www.hant.i.univtours fr/webhant/pub/LabMonVen03a.www.pdf . 2006
[3]  
AntClust:ant clustering and web usage ming. Nicolas Labroche,Nicolas Monmarché,Gilles Venturini. Genetic and Evolutionary Computation . 2003
[4]  
Fuzzy ants as aclustering concept. Parag M Kanade,Lawrence O Hall. proc of the 22nd InternationalConference of the North American Fuzzy InformationProcessing Society . 2003
[5]  
Clustering ensemble using swarm intelligence. Yang Y,Kamel M. IEEE swarm intelligence symposium . 2003
[6]  
A new clustering algorithm based on the chemical recognition system of ants. N.Labroche,N.Monmarche,G.Venturini. proc.of 15 th European Conference on Artificial Intelligence . 2002
[7]  
Finding Groups in Data:An Introduction to Cluster Analysis. Kaufman J,Rousseeuw P J. . 1990