ICA在视觉诱发电位的少次提取与波形分析中的应用

被引:50
作者
洪波
唐庆玉
杨福生
潘映辐
陈葵
铁艳梅
机构
[1] 清华大学电机系!北京
[2] 北京友谊医院!北京
关键词
独立分量分析; 少次提取; 人工神经网络;
D O I
暂无
中图分类号
R318.19 [其他];
学科分类号
080502 ;
摘要
本文提出一种基于扩展的独立分量分析 (ICA)算法的视觉诱发响应少次提取方法。经与目前临床通用的相干平均法比较 ,只经三次平均 ,在波形整体和P10 0潜伏期的提取上 ,效果显著 ,获得医师欢迎 ,很有进一步开发潜力。
引用
收藏
页码:334 / 341
页数:8
相关论文
共 10 条
[1]  
An information maximization approach to blind separation and blind deconvolution. Bell AJ,et al. Neural Computation . 1995
[2]  
Blind signal separation: statistical principles. Cardoso JF. Proceedings of the IEEE . 1998
[3]  
Robust learning algorithm for blind separation of signals. Cichocki A,et al. Electronics Letters . 1994
[4]  
Adaptive blind signal processing-Neural network approaches. Amari S,et al. Proceedings of the IEEE . 1998
[5]  
Spatially Independent Activity Patterns in Functional Magnetic Resonance Imaging Data During the Stroop Color-naming Task. McKeown MJ,et al. Proceedings of the National Academy of Sciences of the United States of America . 1998
[6]  
Spatially Independent Activity Patterns in Functional Magnetic Resonance Imaging Data During the Stroop Color-naming Task. McKeown MJ,et al. Proceedings of the National Academy of Sciences of the United States of America . 1998
[7]  
Blind separation of auditory event-related brain responses into independent components. Makeig S,et al. Proceedings of the National Academy of Sciences of the United States of America . 1997
[8]  
Independent component analysis using an extended infomax algorithm for mixed Subgaussian and Supergaussian sources. Lee TW,et al. Neural Computation . 1999
[9]  
Independent component analysis, A new concept. Comon P. Signal Processing . 1994
[10]  
Blind source separation of more sources than mixtures using overcomplete representations. Lee TW,et al. IEEE Signal Processing Letters . 1999