基于改进深度卷积神经网络的交通标志识别

被引:28
作者
马永杰
李雪燕
宋晓凤
机构
[1] 西北师范大学物理与电子工程学院
关键词
图像处理; 卷积神经网络; 交通标志识别; 改进AlexNet模型; 可视化;
D O I
暂无
中图分类号
TP391.41 []; TP183 [人工神经网络与计算];
学科分类号
080203 ;
摘要
在实际交通环境中,所采集到的交通标志图像质量往往受到运动模糊、背景干扰、天气条件以及拍摄视角等因素的影响,这对交通标志自动识别的准确性、实时性和稳健性提出了很大的挑战。为此提出了改进深度卷积神经网络AlexNet的分类识别算法模型,该模型在传统AlexNet模型基础上,以真实场景中拍摄的交通标志图像数据集GTSRB为研究对象,将所有卷积层的卷积核修改为3×3大小,为了预防和减少过拟合的出现在两个全连接层后加入dropout层,并且为了提高交通标志识别精度,在网络模型第5层后增加两层卷积层。实验结果表明,改进后AlexNet模型在交通标志识别方面具有一定的先进性和稳健性。
引用
收藏
页码:250 / 257
页数:8
相关论文
共 14 条