利用最小二乘支持向量机(LS-SVM)对锅炉燃烧特性建模,构造了以锅炉效率与NOx排放为组合的锅炉燃烧多目标优化模型,并与BP神经网络建模比较,分析表明模型在泛化能力、收敛速度和最优性均优于神经网络模型;针对锅炉高效低污染燃烧多目标问题,提出利用多目标进化算法SPEA2(强度Pareto进化算法)实现运行工况寻优,然后根据模糊集理论在Pareto解集中求得满意解,获得锅炉燃烧优化调整方式。通过某600 MW机组的仿真计算,并与加权遗传算法比较,结果表明本文算法在Pareto前沿具有更好的多样化,克服了将多目标函数加权求和转化为单目标优化问题只能找到凸Pareto最优域及需要多次运行得到Pareto解集的缺陷,计算结果可指导运行人员进行参数优化调整,提高燃烧经济性。