基于单程分裂与归并图像分割的集装箱号识别

被引:12
作者
王志明 [1 ]
张丽 [2 ]
王丽君 [3 ]
机构
[1] 北京科技大学信息学院
[2] 清华大学工程物理系
[3] 清华同方威视技术股份有限公司
关键词
图像分割; 字符识别; 单程分裂与归并; 神经网络;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
集装箱号自动识别在海关物流管理等领域有着重要的实用价值。为了快速准确的地进行集装箱号识别,提出了一种基于图像分割和区域特征分析的集装箱号字符定位和识别方法。该方法首先基于灰度相似性运用改进的单程分裂与归并算法对图像进行自适应阈值分割,同时统计各个区域的灰度、形状、边缘强度等特征;然后根据字符区域特征,利用一定规则来滤除非字符区域;最后,对于定位出的字符区域,再依据区域特征进行二值化,并采用神经网络与模板匹配相结合的方法进行识别。在包含1 804幅图像的集装箱号识别实验中,整箱号识别正确的为1 750幅,准确率为97.01%,这充分说明了算法的有效性。
引用
收藏
页码:450 / 455
页数:6
相关论文
共 2 条
[1]  
A new automaticextraction method of container identity codes. He Zhiwei,Liu Jilin,Ma Hongqing,et al. IEEE Transactionson Intelligent Transportation Systems . 2005
[2]  
Automatic extraction of characters incomplex scenes. Lee C M,Kankanhalli A. International Journal of Pattern Recognition andArtificial Intelligence . 1995