中国东南地区隐性滑坡遥感识别研究

被引:10
作者
冯杭建 [1 ,2 ]
周爱国 [1 ]
唐小明 [2 ]
俞剑君 [3 ]
机构
[1] 中国地质大学(武汉)
[2] 浙江省地质矿产研究所
[3] 南洋理工大学
关键词
地质灾害; 隐性滑坡; 遥感解译; 东南地区; 详细调查; GIS;
D O I
10.16509/j.georeview.2014.06.014
中图分类号
P642.22 [滑坡];
学科分类号
0837 ;
摘要
我国东南地区植被发育,地质灾害发育规模小,以浅层的残坡积层滑坡为主,采用传统遥感解译方法识别此类地质灾害存在困难。为提高东南地区地质灾害野外调查的工作效率和正确性,提出了隐性滑坡遥感解译技术方法,其解译的直接目标不是地质灾害体本身,而是隐性滑坡,即地质灾害易发的边坡或斜坡。其技术路线包括:遥感解译GIS工作环境创建、易发程度初步分析、建立解译规则、确定解译点位和解译区段及划定重点调查区等内容。该方法在淳安县1:50000农村山区地质灾害详细调查工作中进行了实际应用,采用0.5m和1.0m分辨率的航片和5m×5m分辨率的DEM数据,基于ArcG IS平台创建了解译环境,共确定解译点位3025个和解译区段969个,划定重点调查区面积约914.18km2。经过野外实地调查,共确定地质灾害隐患和不稳定斜坡283处,其中位于解译区段内的隐患或者不稳定斜坡共计199处,占总数的70.3%;位于重点调查区内的隐患或者不稳定斜坡共计264处,占总数的93.3%。ROC计算结果表明隐性滑坡遥感解译的正确率为92.9%。野外调查及验证结果说明,隐性滑坡遥感解译技术方法能够合理地划定解译区段和重点调查区范围,从而有效地指导野外调查工作,该成果可为我国东南沿海地区如浙江省等地区的大比例尺地质灾害详细调查提供参考。
引用
收藏
页码:1370 / 1380
页数:11
相关论文
共 47 条
[1]   Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis [J].
Xu, Chong ;
Xu, Xiwei ;
Yao, Xin ;
Dai, Fuchu .
LANDSLIDES, 2014, 11 (03) :441-461
[2]   Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models [J].
Nourani, Vahid ;
Pradhan, Biswajeet ;
Ghaffari, Hamid ;
Sharifi, Seyed Saber .
NATURAL HAZARDS, 2014, 71 (01) :523-547
[3]  
Study of effect of seismic displacements on landslide susceptibility zonation (LSZ) in Garhwal Himalayan region of India using GIS and remote sensing techniques.[J].Naveen Pareek;Shilpa Pal;Mukat L. Sharma;Manoj K. Arora.Computers and Geosciences.2013,
[4]   Lessons learned from protective measures associated with the 2010 Zhouqu debris flow disaster in China [J].
Wang, G. L. .
NATURAL HAZARDS, 2013, 69 (03) :1835-1847
[5]   Landslides triggered by slipping-fault-generated earthquake on a plateau: an example of the 14 April 2010, Ms 7.1, Yushu, China earthquake [J].
Xu, Chong ;
Xu, Xiwei ;
Yu, Guihua .
LANDSLIDES, 2013, 10 (04) :421-431
[6]  
Landslide hazard and risk assessment using semi-automatically created landslide inventories.[J].Tapas R. Martha;Cees J. van Westen;Norman Kerle;Victor Jetten;K. Vinod Kumar.Geomorphology.2013,
[7]  
Complex rupture mechanism and topography control symmetry of mass-wasting pattern; 2010 Haiti earthquake.[J].Tolga Gorum;Cees J. van Westen;Oliver Korup;Mark van der Meijde;Xuanmei Fan;Freek D. van der Meer.Geomorphology.2013,
[8]   A regional scale quantitative risk assessment for landslides: case of Kumluca watershed in Bartin, Turkey [J].
Erener, Arzu ;
Duzgun, H. B. Sebnem .
LANDSLIDES, 2013, 10 (01) :55-73
[9]   Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA [J].
Cheng, Gong ;
Guo, Lei ;
Zhao, Tianyun ;
Han, Junwei ;
Li, Huihui ;
Fang, Jun .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (01) :45-59
[10]  
GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed; China.[J].Chong Xu;Fuchu Dai;Xiwei Xu;Yuan Hsi Lee.Geomorphology.2011,