Integration of SAR Polarimetric Features and Multi-spectral Data for Object-Based Land Cover Classification

被引:9
作者
Yi ZHAO
Mi JIANG
Zhangfeng MA
机构
[1] SchoolofEarthSciencesandEngineering,HohaiUniversity
关键词
synthetic aperture radar(SAR); polarimetric; multispectral; data fusion; object-based; land cover classification;
D O I
暂无
中图分类号
TP79 [遥感技术的应用]; P901 [景观学、区域论]; TN957.52 [数据、图像处理及录取];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ; 0705 ; 070501 ; 080904 ; 0810 ; 081001 ; 081002 ; 081105 ; 0825 ;
摘要
An object-based approach is proposed for land cover classification using optimal polarimetric parameters. The ability to identify targets is effectively enhanced by the integration of SAR and optical images. The innovation of the presented method can be summarized in the following two main points: ①estimating polarimetric parameters (H-A-Alpha decomposition) through the optical image as a driver; ②a multi-resolution segmentation based on the optical image only is deployed to refine classification results. The proposed method is verified by using Sentinel-1/2 datasets over the Bakersfield area,California. The results are compared against those from pixel-based SVM classification using the ground truth from the National Land Cover Database (NLCD). A detailed accuracy assessment complied with seven classes shows that the proposed method outperforms the conventional approach by around 10%,with an overall accuracy of 92.6% over regions with rich texture.
引用
收藏
页码:64 / 72
页数:9
相关论文
共 27 条
[1]   联合像素级和对象级分析的遥感影像变化检测 [J].
冯文卿 ;
眭海刚 ;
涂继辉 ;
孙开敏 .
测绘学报, 2017, 46 (09) :1147-1155+1164
[2]   精确提取InSAR时间去相关分量的方法 [J].
田馨 ;
廖明生 .
红外与毫米波学报, 2016, 35 (04) :454-461
[3]   基于GlobeLand30的全球城乡建设用地空间分布与变化统计分析 [J].
陈军 ;
陈利军 ;
李然 ;
廖安平 ;
彭舒 ;
鲁楠 ;
张宇硕 .
测绘学报, 2015, (11) :1181-1188
[4]   多时相双极化合成孔径雷达干涉测量土地覆盖分类方法 [J].
王馨爽 ;
陈尔学 ;
李增元 ;
姚顽强 ;
赵磊 .
测绘学报, 2015, (05) :533-540
[5]  
Land cover classification and wetland inundation mapping using MODIS[J] . Courtney A. Di Vittorio,Aris P. Georgakakos.Remote Sensing of Environment . 2018
[6]  
Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications[J] . Amanda Veloso,Stéphane Mermoz,Alexandre Bouvet,Thuy Le Toan,Milena Planells,Jean-Fran?ois Dejoux,Eric Ceschia.Remote Sensing of Environment . 2017
[7]  
Comparison of different polarimetric decompositions for soil moisture retrieval over vegetation covered agricultural area[J] . Hongquan Wang,Ramata Magagi,Kalifa Goita.Remote Sensing of Environment . 2017
[8]  
Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification[J] . Hankui K. Zhang,David P. Roy.Remote Sensing of Environment . 2017
[9]  
Application of polarization signature to land cover scattering mechanism analysis and classification using multi-temporal C-band polarimetric RADARSAT-2 imagery[J] . Xiaodong Huang,Jinfei Wang,Jiali Shang,Chunhua Liao,Jiangui Liu.Remote Sensing of Environment . 2017
[10]  
The potential of more accurate InSAR covariance matrix estimation for land cover mapping[J] . Mi Jiang,Bin Yong,Xin Tian,Rakesh Malhotra,Rui Hu,Zhiwei Li,Zhongbo Yu,Xinxin Zhang.ISPRS Journal of Photogrammetry and Remote Sensin . 2017