大型天文光学望远镜超低速跟踪控制

被引:6
作者
周旺平
徐欣圻
机构
[1] 中国科学院国家天文台南京天文光学技术研究所
关键词
神经网络; 非线性干扰; 伺服系统; 光学望远镜;
D O I
暂无
中图分类号
P111.2 [天文光学望远镜];
学科分类号
070401 ;
摘要
为实现当代大型天文光学望远镜机架伺服系统的高精度控制,利用神经网络预测控制来克服系统中存在的非线性干扰,通过采集机架的输入输出信号训练神经网络来逼近非线性的系统动态,另外,为克服系统外部的风振等非线性干扰,引入了非线性阻尼项来提高伺服系统的跟踪精度。仿真结果表明了该方法的正确性且能获得较高的控制精度。
引用
收藏
页码:1 / 4
页数:4
相关论文
共 7 条
[1]  
Neural Network Toolbox For Use with MATLAB-Matlab User’s Guide Version4. Howard Demuth,Mark Beale. .
[2]  
Time to go H-∞?. Erm Toomas,Hurak Zdenek,Bauvir Bertrand. Proceedings of SPIE the International Society for Optical Engineering . 2004
[3]  
Azimuth/elevation servo performance of Design of the W.N.Keck Telescope. Mark J Sirota,Peter M Thompson. Proceedings of SPIE the International Society for Optical Engineering . 2002
[4]  
Neural Networks for control. Hagan M T,Demuth H B. Proceedings of the1999American Control Conference . 1999
[5]  
Study on H-Infinity control for LAMOST main axes. ZHOU Wang-ping,XU Xin-qi. Proceedings of SPIE the International Society for Optical Engineering . 2006
[6]  
Comments on A new model for control of systems with friction. Canudas De Wit C. IEEE Transactions on Automatic Control . 1998
[7]  
Stable Adaptive Control and Estimation for Nonlinear Systems. Jeffrey T Spooner,Manfredi Maggiore,Raul Ordonez,et al. . 2002