基于低质量图片的两级车牌字符识别算法

被引:4
作者
万燕
刘伟
机构
[1] 东华大学计算机科学与技术学院
关键词
车牌字符识别; KPCA; SVM; 局部特征; 两级分类;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
目前大多数道口的视频监控系统或图像采集设备都采用普通摄像头,车辆图片质量不高,容易受到光照不均、运动模糊及摄像角度的影响,图片中车牌字符小,字符混淆程度严重,大大降低了车牌字符的自动识别率。针对低质量车牌图片中车牌字符识别率低的问题,提出一种结合支持向量机(SVM)和字符局部特征提取的两级组合分类识别架构。第一级分类器采用核主成分分析(KPCA)对车牌字符进行特征提取,并利用SVM进行分类。如果是易混淆字符,则进入第二级分类器,针对易混淆字符的局部特征设计不同的分类方法加以区分,进而得到最终的识别结果。实验表明该两阶段分类方法能够在各种复杂场景下针对低质量图片达到较高的车牌字符识别率。
引用
收藏
页码:281 / 284
页数:4
相关论文
共 8 条
[1]  
Skeletonization by Multiple Scan Order. ZHONG Y. L,WAN Y,YAO L. The 2nd International Workshop Intelligent System and Applications . 2010
[2]   Nonlinear component analysis as a kernel eigenvalue problem [J].
Scholkopf, B ;
Smola, A ;
Muller, KR .
NEURAL COMPUTATION, 1998, 10 (05) :1299-1319
[3]  
Optical recognition of motor vehicle license plates. Comelli P,Ferragina P,Granieri MN,et al. IEEE Transactions on Vehicular Technology . 1995
[4]  
A comparison of methods for multi-class support vector machines. Chih-Wei Hsu,Chih-Jen Lin. IEEE Transactions on Neural Networks . 2002
[5]  
Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Bernhard Scholkopf,Alexander Smola,Klaus Robert Muller. Neural Computation . 1998
[6]  
A training algorithm for optimal margin classifiers. Boser B E,Guyon I M,Vapnik V N. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory . 1992
[7]  
Vehicle License Plate Character Recog-nition By Neural Networks. NUKANO T,FUKUMI M. Intelligent Signal Processing and Communication Systems, 2004. ISPACS 2004. Proceedings of 2004 International Symposium on . 2004
[8]  
Automatic license plate recognition. Shyang-Lih Chang,Li-Shien Chen,Yun-Chung Chung,et al. IEEE Transactions on Intelligent Transportation Systems . 2004