混沌吸引子细胞模型的扩展与详述 (Ⅱ )(英文)

被引:2
作者
丘水生
机构
[1] 华南理工大学电子与信息工程学院!广东广州
关键词
混沌; 混沌吸引子; 混沌机理;
D O I
暂无
中图分类号
TP13 [自动控制理论];
学科分类号
摘要
基于本文的第一部分中提出的理论 ,引入同步轨道、组合轨道、n_层周期轨道和随机分叉等概念 ,提出了一个混沌吸引子的分形分层结构 .这种结构对于理解混沌运动的确定性和随机性具有重要意义 .
引用
收藏
页码:1 / 5
页数:5
相关论文
共 11 条
[1]  
Quasi_periodicity and dynamical systems: an experimentalist’s view. Glazier J A,Libchaber A. IEEE Tans Circuits Syst . 1988
[2]  
Time_frequency distribution—a review. Cohen L. Proceedings IEEE . 1989
[3]  
Synchronization in chaotic systems. Pecora L M,Carroll T L. Physical Review Letters . 1990
[4]  
Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Genesio R,Tesi A. Automatica . 1992
[5]  
Unstable periodic orbits and the dimensions of multifractal chaotic attractors. Grebogi C,Ott E,Yorke J A. Physical Review A Atomic Molecular and Optical Physics . 1988
[6]  
Chua’s circuit: rigorous results and future problems. Shil’nikov L P. International Journal of Bifurcation and Chaos . 1994
[7]  
New results of chaotic synchronization research. Cai X,Qiu S_S,Chen W. Journal of South China University of Technology . 1999
[8]  
A periodic orbit theory of chaotic attractor( Ⅰ). Qiu S_S. Journal of South China University of Technology . 2000
[9]  
The role of synchronization in digital communications using chaos_part II: Chaotic modulation and chaotic synchronization. Kolumbán G,Kennedy M P,Chua L O. IEEE Transactions on Circuits and Systems for Video Technology . 1998
[10]  
Summary of the second workshop on measures of complexity and chaos. Gilmore R. International Journal of Bifurcation and Chaos . 1993