基于EGARCH过程的电磁频谱占用状态波动特性分析

被引:4
作者
王磊
苏东林
谢树果
王国玉
机构
[1] 北京航空航天大学电子信息工程学院
关键词
电磁频谱; 电磁环境; 自回归移动平均; 指数广义自回归; 条件异方差;
D O I
暂无
中图分类号
TN98 [];
学科分类号
摘要
针对传统频谱占用度自回归移动平均(ARMA)模型由于未考虑序列的条件二阶矩,导致无法准确描述频谱占用状态的非线性时变特性问题,该文提出一种基于指数广义自回归条件异方差(EGARCH)过程的频谱占用状态时间序列建模方法。首先通过对ARMA模型的剩余残差进行条件异方差性检验,表明频谱占用时间序列存在明显的时域"波动集聚"性;其次基于EGARCH过程构建频谱占用度时间序列模型以及对实测数据的分析,表明该模型相较ARMA模型对频谱占用度的拟合与预测精度更高;最后由EGARCH模型参数存在"杠杆效应"系数,表明频谱占用状态变化对电磁环境波动的影响具有非对称性。研究结果表明EGARCH模型能够量化反映频谱占用状态的复杂非线性时变过程。
引用
收藏
页码:2767 / 2773
页数:7
相关论文
共 10 条
  • [1] Understandthe predictability of wireless spectrum:a large-scale empiricalstudy. Song Cheng-qi,Chen Da-wei,Zhang Qian. IEEE International Conference on Communications . 2010
  • [2] An autoregressiveapproach for spectrum occupancy modeling and predictionbased on synchronous measurements. Gorcin A,Celebi H,Khalid A Q,et al. IEEE 22thInternational Symposium on Personal,Indoor and MobileRadio Commission . 2011
  • [3] A quantitative assessmentof wireless spectrum measurements for dynamic spectrumaccess. Pagadarai S,Wyglinski A M. Proceedings of the 4th International Conference onCROW NCOM . 2009
  • [4] Time series ARIMA model ofspectrum occupancy for cognitive radio. Wang Zhe,Salous S. IET Seminar onCognitive Radio and Software Defined Radios . 2008
  • [5] Miningspectrum usage data:a large-scale spectrum measurementstudy. Yin Si-xing,Chen Da-wei,Zhang Qian,et al. IEEE Transactions on Mobile Computing . 2011
  • [6] Time Series Analysis:Univariate and MultivariateMethods. Wei W S. . 2006
  • [7] Spectrum usageprediction based on high-order Markov model for cognitive radionetworks. LI YANG,DONG YU-NING,ZHANG HUI,et al. CIT 2010:Proceedings of IEEE Conference onComputer and Information Technology . 2010
  • [8] Binary time series approach to spectrum prediction for cognitive radio. Yarkan S,,Arslan. Vehicular Technology Conference . 2007
  • [9] Discrete-time spectrumoccupancy model based on Markov chain and duty cyclemodels. López-Benítez M,Casadevall F. IEEE International Symposium on DynamicSpectrum Access Networks . 2011
  • [10] A spectrumsurveying framework for dynamic spectrum accessnetworks. Datla D,Wyglinski A M,Minden G J. IEEE Transactions on Vehicular Technology . 2009