<正> §1.引 言 Bézier曲线和B样条曲线已广泛应用到汽车、航空、造船等许多领域中.Hering讨论了与凸多边形每边相切的分段三(四)次 Bézier闭曲线和三(四)次B样条闭曲线.它的所有Bézier点必须通过求解大型方程组得到,计算量大,且曲线易出现拐点,而B样条闭曲线的控制点要通过反算得到[1].方逵改进了Hering的方法,构造了G2连续的分段三次曲线[2],基本上克服了Hering方法的两个缺点,但局部修改仍然是比较复杂的.方逵等再次研究了与任意多边形相切的分段四次和五次Bézier曲线[3],但五次Béier曲线不能作局部修改.本文的第二节研究了与任意多边形相切的分段C-Bézier曲线,该曲线C1连续的,且对切线多边形具有保形性,每段C-Bézier曲线上的控制点由切线多边形的顶点计算