用于分布式目标最优极化求解的Lagrange乘因子法优化

被引:2
作者
陈强
蒋咏梅
高贵
匡纲要
机构
[1] 国防科技大学电子科学与工程学院三系
关键词
最优极化状态; 拉格朗日乘因子法; 分布式目标;
D O I
暂无
中图分类号
TN957.2 [雷达天线];
学科分类号
080904 ; 0810 ; 081001 ; 081002 ; 081105 ; 0825 ;
摘要
目前拉格朗日乘因子法是求解分布式目标最优极化的主要算法。该算法需要计算一个以拉格朗日乘法因子为自变量的六次多项式方程。针对拉格朗日乘因子法在计算该多项式方程根时存在的问题,提出了一种优化求解法。在理论证明该方程最大根对应天线最大接收功率而最小根对应天线最小接收功率的基础上,该优化求解法通过缩小迭代搜索区间获取方程最大、最小根,然后利用这些根与天线极化之间的关系式求解目标最优极化。为了提高迭代收敛速度,通过理论分析确定了最小初始迭代搜索区间。实验结果表明,该优化求解法消除了算法对于拉格朗日乘因子初始值的依赖,提高了算法的运算速度。
引用
收藏
页码:1520 / 1526
页数:7
相关论文
共 15 条
[1]  
Power optimization for polarimetric bistatic random mechanisms. Titin-Schnaider C. IEEE T Geosci Remote Sens . 2007
[2]  
On the optimum polarizations of incoherently reflected waves. Van Zyl J J,et al. IEEE Transactions on Acoustics Speech and Signal Processing . 1987
[3]  
Two bistatic target signatures: the bistatic equations and the bistatic polarization fork. Germond A L,,Pottier E,Saillaid J. 12th Int Conf Microwaves Radar: MIKON ‘98 . 1998
[4]  
Phenomenological theory of radar targets. Huynen J R. . 1970
[5]  
Nonlinear Optimization Method of Radar Target Polarization Enhancement. Wang Xuesong,,Xiao Shunping,Tao Huamin,et al. Progress in Natural Science . 2000
[6]  
Basics of SAR PolarimetryⅡin Radar Polarimetry and Interferometry. Boerner W M. Educational notes,RTO-ENSET-081bis . 2007
[7]  
Effects of the type of polarization on echo characteristics. Kennaugh E M. . 1952
[8]  
Mean backscattering properties of random radar targets:a polarimetric covariance matrix concept. Ziegler V,Luneburg E,Schroth A. Proc.IGARSS . 1992
[9]  
Bistatic radar polarimetry theory. Germond A L,Pottier E,Saillaid J. Ultra-Wideband Radar Technology . 2001
[10]  
On the basic principles of radar polarimetry:The target characteristic polarization state theory of Kennaugh,Huynen‘s polarization fork concept,and its extension to the partially polarized case. Boerner W M,Yan W L,Xi A Q,et al. Proceedings of the IEEE . 1991