为了提高番茄损伤检测与分类的准确率和效率,综合运用计算机视觉技术、BP算法、人工神经网络技术,实现番茄损伤的自动检测与分类。首先,通过计算机视觉系统获取番茄图像,利用图像处理去除噪声、图像分割、图像增强等多种基本图像处理的方法对番茄损伤图像进行了处理,综合运用并行和串行区域分割技术进行番茄表面缺陷区域检测。其次,对番茄图像进行了特征分析,通过提取三种特征包括8个特征参数,采用改进的BP算法训练的多层前向人工神经网络对番茄的损伤进行分类。该文中缺陷检测方法和特征提取方法的采用,使该计算机视觉系统节省了时间,提高了精度。试验证明番茄损伤检测和分类的准确率不低于90%。