基于支持向量回归神经网络的动态系统辨识(英文)

被引:3
作者
李军
刘君华
机构
[1] 西安交通大学电气工程学院
关键词
支持向量回归; 神经网络; 系统辨识; 鲁棒学习算法; 自适应性;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
结合支持向量机和神经网络各自的优点,提出了一种新颖的自适应支持向量回归神经网络(SVR-NN).首先,利用支持向量回归方法确定SVR-NN的初始结构和初始化权值,基于支持向量自适应地构造SVR-NN神经网络的隐层节点;然后,使用退火过程的鲁棒学习算法更新网络节点参数和权值.为了验证所提出方法的有效性,给出了自适应SVR-NN应用于非线性动态系统辨识的实例.仿真结果表明,与以前的神经网络方法相比,基于SVR-NN网络的辨识方案能获得相当好的性能,它具有很快的收敛速度.因此,自适应的SVR-NN为非线性系统辨识提供了极有吸引力的新途径.
引用
收藏
页码:228 / 233
页数:6
相关论文
共 1 条
[1]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167