组合拓扑方法在组合学和图论中的应用

被引:3
作者
谢力同
刘桂真
机构
[1] 山东大学数学系
[2] 济南
[3] 山东
关键词
组合学; 图论; 同调论; 不动点定理;
D O I
暂无
中图分类号
学科分类号
摘要
本文介绍组合拓扑方法在图论和组合学中的应用,探索一些新的离散问题和连续问题的联系,介绍目前有关这方面的新结果及发展动向。本文主要介绍同调理论在图论中的应用,与图有关的复形及性质,不动点定理在离散问题中的应用等。文中提出了一些新结果及可供研究的新问题。
引用
收藏
页码:385 / 390
页数:6
相关论文
共 30 条
[1]  
Graph theory with applications. Bondy J A and Murty U S R. . 1976
[2]  
Higher-dimensional tree structures. Dewdney A K. Journal of Combinatorial Theory Series B . 1974
[3]  
The smallest graph variety containing all paths. Nowakowski R and Rival I. Discrete Mathematics . 1983
[4]  
Fixed point theorem in partially ordered sets. Baclawski K and Bjorner A. Advances in Mathematics . 1979
[5]  
Fixed edge theorem for graphs with loops. Nowakowski R and Rival I. Journal of Graph Theory . 1979
[6]  
On the Helly property working as a compactness criterion on graphs. Quilliot A. Journal of Combinatorial Theory Series A . 1985
[7]  
Absolute planar retracts and four color conjecture. Hell P. Journal of Combinatorial Theory Series B . 1974
[8]  
The problem of fixed points in ordered sets.Ann. Rival I. Discrete Mathematics . 1980
[9]  
Combinatorics and topology. Bjoner A. Notices of American. Mathematical Society . 1985
[10]  
A retraction problem in graph theory. Quilliot R. Discrete Mathematics . 1985