复杂山区地质灾害机载激光雷达识别研究

被引:37
作者
郭晨 [1 ]
许强 [1 ]
董秀军 [1 ]
刘小莎 [1 ]
佘金星 [2 ]
机构
[1] 成都理工大学地质灾害防治与地质环境保护国家重点实验室
[2] 成都理工大学地球科学学院
基金
国家创新研究群体科学基金; 国家重点研发计划;
关键词
地质灾害识别; 机载激光雷达; 遥感解译; 天空视域因子; 复杂山区;
D O I
10.13203/j.whugis20210121
中图分类号
P694 [灾害地质学];
学科分类号
0818 ; 081803 ;
摘要
地质灾害识别是灾害易发性评价以及监测预警的基础,采用传统的人工地面调查和卫星遥感方式在地形条件复杂的高植被覆盖山区进行地质灾害识别具有较大困难。机载激光雷达技术(light detection and ranging, LiDAR)的发展为高植被复杂山区的地质灾害识别提供了新的解决方案。利用获取的机载LiDAR点云数据,通过点云滤波、空间插值生成了高分辨率数字高程模型(digital elevation model, DEM),结合天空视域因子(sky view factor,SVF)的DEM可视化方法,开展了中国四川省丹巴县城周边135 km2的地质灾害识别研究工作。共解译出地质灾害146处,总面积约46.48 km2,占研究区总面积的33.4%,并通过现场实地调查验证了机载LiDAR识别结果的可靠性。在此基础上分析了该区地质灾害的空间分布规律及其影响因素。研究结果为高植被复杂山区的地质灾害识别提供了一定参考,并为丹巴县地质灾害防治与风险评价提供数据支撑。
引用
收藏
页码:1538 / 1547
页数:10
相关论文
共 25 条
  • [1] Mapping of shallow landslides with object-based image analysis from unmanned aerial vehicle data.[J].Resul Comert;Ugur Avdan;Tolga Gorum;Hakan A. Nefeslioglu.Engineering Geology.2019, C
  • [2] Successive landsliding and damming of the Jinsha River in eastern Tibet, China: prime investigation, early warning, and emergency response
    Fan, Xuanmei
    Xu, Qiang
    Alonso-Rodriguez, Andres
    Subramanian, Srikrishnan Siva
    Li, Weile
    Zheng, Guang
    Dong, Xiujun
    Huang, Runqiu
    [J]. LANDSLIDES, 2019, 16 (05) : 1003 - 1020
  • [3] Multitemporal UAV surveys for landslide mapping and characterization
    Rossi, Guglielmo
    Tanteri, Luca
    Tofani, Veronica
    Vannocci, Pietro
    Moretti, Sandro
    Casagli, Nicola
    [J]. LANDSLIDES, 2018, 15 (05) : 1045 - 1052
  • [4] Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: A case study of Jiaju landslide in Danba; China.[J].Jie Dong;Lu Zhang;Minggao Tang;Mingsheng Liao;Qiang Xu;Jianya Gong;Meng Ao.Remote Sensing of Environment.2018,
  • [5] The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data
    Intrieri, Emanuele
    Raspini, Federico
    Fumagalli, Alfio
    Lu, Ping
    Del Conte, Sara
    Farina, Paolo
    Allievi, Jacopo
    Ferretti, Alessandro
    Casagli, Nicola
    [J]. LANDSLIDES, 2018, 15 (01) : 123 - 133
  • [6] Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide, Maoxian, Sichuan, China
    Fan, Xuanmei
    Xu, Qiang
    Scaringi, Gianvito
    Dai, Lanxin
    Li, Weile
    Dong, Xiujun
    Zhu, Xing
    Pei, Xiangjun
    Dai, Keren
    Havenith, Hans-Balder
    [J]. LANDSLIDES, 2017, 14 (06) : 2129 - 2146
  • [7] Earth Observations for Geohazards: Present and Future Challenges
    Tomas, Roberto
    Li, Zhenhong
    [J]. REMOTE SENSING, 2017, 9 (03):
  • [8] Landslide deformation monitoring with ALOS/PALSAR imagery: A D-InSAR geomorphological interpretation method.[J].Romy Schlögel;Cécile Doubre;Jean-Philippe Malet;Frédéric Masson.Geomorphology.2015,
  • [9] ‘You are HERE’: Connecting the dots with airborne lidar for geomorphic fieldwork.[J].Joshua J. Roering;Benjamin H. Mackey;Jill A. Marshall;Kristin E. Sweeney;Natalia I. Deligne;Adam M. Booth;Alexander L. Handwerger;Corina Cerovski-Darriau.Geomorphology.2013,
  • [10] Landslide inventory maps: New tools for an old problem
    Guzzetti, Fausto
    Mondini, Alessandro Cesare
    Cardinali, Mauro
    Fiorucci, Federica
    Santangelo, Michele
    Chang, Kang-Tsung
    [J]. EARTH-SCIENCE REVIEWS, 2012, 112 (1-2) : 42 - 66