共 11 条
[1]
Determining the likelihood of malignancy in soli- tary pulmonary nodules with Bayesian analysis.2. Application. Gurney JW. Radiology . 1993
[2]
Soli- tary pulmonary nodules: part I.Morphologic evaluation for dif- ferentiation of benign and malignant lesions. Erasmus JJ,Connolly JE,Page McAdams H,Roqqli VL. Radiographics . 2000
[3]
Evaluation and Management of the solitary pul- monary nodule. Ost D,Fein A. American Journal of Respiratory and Critical Care Medicine . 2002
[4]
Artificial intelligence techniques for monitoring dangerous infection. Lamma E,Mello P,Nanetti A. IEEE Transactions on Information Theory . 2006
[5]
Using dependency/association rules to find indications for computed tomography in a head trauma dataset. Susan P,Bernard D,Hilary W. Artificial Intelligence in Medicine . 2002
[6]
Analyzing microar- ray data using quantitative association rules. Georgii E,Richter L,Ruckert U,Kramer S. Bioinformatics . 2005
[7]
Usefulness of artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: evalution with receiver operating character- istic analysis. Matsuki Y,Nakamura K,Watanabe H,Aoki T,Nakata H,Katsuragawa S,et al. American Journal of Roentgenology . 2002
[8]
Application research for building bone tumor assisted diagnostic knowledge database based on rough set. Zhang H,Qian ZC,Qu JH. Medical Information . 2004
[9]
The ideal form of laboratory informa- tion management. Katapka H,Sugiura T. Rinsho Byori . 2005
[10]
Database mining: a perfor- mance perspective. Agrawal R,Imielinski T,Swami A. IEEE Transactions on Knowledge and Data Engineering . 1993