基于实际中常用的CGS(ClassicalGram-Schmidt)、MGS(ModifiedGram-Schmidt)、HT(HouseholderTransformation)及Givens算法,给出了1类改进的直交化最小二乘新算法,分别称之为改进的CGS、MGS、MHT及MGV算法,改善了原算法的数值稳定性.将改进算法用于非线性NARMAX模型辨识,构造出了1种新的模型结构与参数辨识的一体化算法.新算法基于逐步回归进行模型选项并消去模型中的冗余项,保证了最终模型的结构优化,并可给出比Bilings等算法精度更高的参数估计.仿真结果证明了文章中算法的优越性