基于粗集的规则提取LBR和LEM3

被引:4
作者
胡丹
莫智文
机构
[1] 四川师范大学数学研究所
关键词
粗集; 决策表; 模糊划分; 规则提取;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
本文基于粗集理论,提出了一种新的规则提取法LBR(Learning By Rough Sets),并对LBR与另一种已有的规则提取法LEM1,即全局覆盖算法(global covering algorithm)进行了比较和讨论.基于比较的结果,得出了将LEM1改进后的LEM3.LBR不但可用于普通的决策表规则提取,更多地可应用于基于模糊划分的规则提取.LBR的提出,极大地简化和丰富了规则提取算法,在已知数据中可获取更为丰富的信息量.而LEM3的使用,则是在将"依赖"(depend on)这一概念推广的基础上,更灵活地使用"覆盖"(covering),扩大了获取规则的范围.LBR和LEM3因其各自不同的优点,在数据挖掘和智能领域均具有广泛的应用前景.
引用
收藏
页码:129 / 133
页数:5
相关论文
empty
未找到相关数据