基于PDE模型的图像处理方法

被引:6
作者
高鑫
刘来福
机构
[1] 北京师范大学数学系!北京
关键词
图像恢复; 异质扩散模型; 水平集方法;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
介绍了异质扩散偏微分方程 ( PDE)和几何驱动 ( GD)图像处理新方法 .对照传统滤波方法 ,分析了PDE和 GD方法的优点 ,并给出用于模糊和噪声图像恢复处理的两个模型
引用
收藏
页码:206 / 210
页数:5
相关论文
共 10 条
[1]  
A regularization approach to joint blur identification andimage restoration. You Y L,Kaveh M. IEEE Transactions on Image Processing . 1996
[2]  
Fronts Propagating with Curvature Dependent Speed, Algorithms Based on The HamiltonJacobi Formulation. Osher S,Sethian J. Journal of Computational Physics . 1988
[3]  
Total variation blind deconvolution. Chan T F,Chui -Kwnag Wong. IEEE Transactions on Image Processing . 1998
[4]  
Hubble space telescope image restoration in its fourth year. Adorf H M. Inverse Problems . 1995
[5]  
Image denoising and segmentation via nonlinear diffusion. CHEN Yun-mei,Vemuri B C,Wang L. Computers and Mathematics With Applications . 2000
[6]  
User′s guide to viscosity solutions of second order partial linear differential equations. Crandall M G,shii H,Lions P L. Bulletin of the American Mathematical Society . 1992
[7]  
Image Selective Smoothing and Edge Detection by Nonlienar Diffusion Ⅱ. Alvarez L,Lions P L,Morel J M. SIAM Journal on Numerical Analysis . 1992
[8]  
Nonlinear total variation based noise removal algorithm. Rudin L,Osher S,Fatemi E. Physica D Nonlinear Phenomena . 1992
[9]   THE STRUCTURE OF IMAGES [J].
KOENDERINK, JJ .
BIOLOGICAL CYBERNETICS, 1984, 50 (05) :363-370
[10]   Removing noise and preserving details with relaxed median filters [J].
Ben Hamza, A ;
Luque-Escamilla, PL ;
Martínez-Aroza, J ;
Román-Roldán, R .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 1999, 11 (02) :161-177