神经网络广义逆系统控制

被引:18
作者
何丹
戴先中
王勤
机构
[1] 东南大学自动控制系
关键词
神经网络; 逆系统; 非线性系统控制; 线性化; 解耦;
D O I
暂无
中图分类号
TP183 [人工神经网络与计算];
学科分类号
摘要
提出适合于高阶非线性系统线性化解耦的广义逆系统 .它与被控系统复合后 ,不但能实现原系统的线性化和解耦 ,而且通过合理地设计逆系统 ,可使伪线性复合系统的极点在复平面上任意配置 .进一步提出由静态神经网络和若干积分惯性等线性环节组成的神经网络广义逆系统 ,为模型未知且内部状态不易测量的高阶非线性系统的线性化解耦控制提供一条有效途径 ,进一步拓展了神经网络逆系统控制方法的适用范围
引用
收藏
页码:34 / 40
页数:7
相关论文
共 11 条
  • [1] ANN inverse system method for nonlinear systems control. He Dan. . 1999
  • [2] DFL_nonlinear control design with applications in power systems. Gao L,Chen L and Fan Y,et al. Automatica . 1992
  • [3] Invertibility of multivariable nonlinear control systems. Hirschorn,R.M. IEEE Trans.AutomaticControl . 1979
  • [4] Inverse System Method for Multivariable Nonlinear System Control. Li Chunwen and Feng Yuankun. . 1991
  • [5] Inversion Method in the Discrete_Time Nonlinear Control Systems Synthesis Problems. Kotta U. . 1995
  • [6] Novel method for decoupling nonlinear MIMO system with linearization (I) -Continuous_time system. Dai Xianzhong,He Dan and Zhang Teng,et al. Control and Decision . 1999
  • [7] Global external linearization of nonlinear systems via feedback. Cheng D,Tarn T J and Isidori A. IEEE Transactions on Automatic Control . 1985
  • [8] Nonlinear Control Design. Conte G,Perdon A M and Moog C H. . 1999
  • [9] Nonlinear Control Design. Marino R & Tomei P. . 1995
  • [10] Geometry Theory of Nonlinear System. Cheng Daizhan. . 1998