考虑预报因子选择的神经网络降雨径流模型

被引:7
作者
卢韦伟
周建中
陈璐
叶磊
机构
[1] 华中科技大学水电与数字化工程学院
关键词
神经网络模型选取; 水文预报; 预报因子选择; Copula熵;
D O I
暂无
中图分类号
P338 [水文预报];
学科分类号
081501 ;
摘要
为优化神经网络模型的应用效果,研究了基于神经网络的降雨-径流模型,根据Copula熵法确定预报因子,并与传统的线性相关法进行比较分析,采用BP、RBF、GRNN三种神经网络建立降雨-径流模型,应用均方根误差、合格率、确定性系数三个指标为模型选取评价准则。通过对金沙江流域的径流预报,发现基于Copula熵法的BP模型预报结果更接近实测值,精度更高。
引用
收藏
页码:21 / 25
页数:5
相关论文
共 10 条
[1]  
Non-linear Varia-ble Selection for Artificial Neural Networks UsingPartial Mutual Information. May R J,Maier H R,Dandy G C. Environmental Modelling&Software . 2008
[2]  
Selection of input variables for data driven models:an average shifted histogram partial mutual information estimator approach. Fernando T M K G,Maier H R,Dandy G C. Journal of Hydronautics . 2009
[3]  
Seasonal to interannual rainfall probabilistic forecasts for improved water supplymanagement: Part1-A strategy for system predictor identification. Sharma A. Journal of Hydronautics . 2000
[4]  
Generalized regression neural network in monthly flow forecasting. Cigizoglu,Hikmet Kerem. Civil Engineering . 2005
[5]  
Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1 — A strategy for system predictor identification[J] . A. Sharma. &nbspJournal of Hydrology . 2000 (1)
[6]   串联水库洪水预报模型影响因素及精度分析 [J].
徐晨光 ;
李春静 ;
赵麦换 .
人民黄河, 2008, (07) :34-35
[7]   基于BP神经网络的旬降雨径流相关预报模型 [J].
梁国华 ;
习树峰 ;
王本德 .
水力发电, 2009, 35 (08) :10-12+39
[8]   Mutual Information Is Copula Entropy [J].
马健 ;
孙增圻 .
TsinghuaScienceandTechnology, 2011, 16 (01) :51-54
[9]  
Using mutual information for selecting features in supervised neural net learning. Roberto Battiti. IEEE Transactions on Neural Networks . 1994
[10]  
Input Deter-mination for Neural Network Models in Water Re-sources Applications.Part 2.Case Study:Forecas-ting Salinity in a River. Bowden G J,Maierb H R,Dandy G C. Journal of Hydronautics . 2005