形态学变换的神经网及布尔函数实现

被引:1
作者
陶鹏
李介谷
机构
[1] 上海交通大学图像处理研究所
关键词
形态支离; 前馈神经网表达; 布尔函数表达; 形态学变换;
D O I
暂无
中图分类号
TP183 [人工神经网络与计算];
学科分类号
摘要
本文提出了数学形态学算子的前馈神经网实现的模型.各种形态学算子(形态交离、腐蚀、膨胀、开启、闭合及多结构元素的基本形态运算的交或并)都可以根据算子本身置定权值、阈值和网结构以前馈神经网来实现.相应于对应算子和结构元素的神经网可通过简单的训练而直接得到.同时,我们也讨论了上述各种算子的布尔函数实现.
引用
收藏
页码:283 / 291
页数:9
相关论文
共 11 条
  • [1] Greyscale morphology. Sternberg S R. CVGIP . 1986
  • [2] Image Analysis and Mathematical Morphology. Serra J. . 1982
  • [3] A note on the use of local min and max operations in digital picture processing. Y Nakagawa,A Rosenfeld. IEEE Transactions on Systems Man and Cybernetics . 1978
  • [4] The Algebraic Basis of Mathematical Morphology Part I: Dilations and Erosions. Heijmans H. J. A. M,,Ronse C. C.W.I, Amsterdam, The Netherlands. Rep. AM-R 8807 . 1988
  • [5] Beyond Mathematical Morphology. Ritter G X,Davidson J L,Wilson J N. Proc SPIE (Visual Comm Image Processing Ⅱ) . 1987
  • [6] Matheron,G. Random Sets and Integral Geometry . 1975
  • [7] E-filters. Preston K Jr. IEEE Transactions on Applied Superconductivity . 1983
  • [8] Neural Network Implementation of Mathematical Morphology Operation. Tao Peng,Li Jeigu. Proc SPIE (Applications of Artificial Neural Networks V) . 1994
  • [9] Image analysis using mathematical morphology. HARALICK R M,STERNBERG S R,ZHUANG X. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1987
  • [10] A representation theory for morphological image and signal processing. Marogos P. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1989