IPSMS:一个网络舆情监控系统的设计与实现

被引:21
作者
丁杰
徐俊刚
机构
[1] 中国科学院研究生院信息科学与工程学院
关键词
网络舆情; 话题跟踪; 话题检测; 网页清理; k-d tree;
D O I
暂无
中图分类号
TP393.09 [];
学科分类号
080402 ;
摘要
描述一个网络舆情监控系统IPSMS(Internet public sentiment monitoring system)。该系统试图将网络新闻及论坛、BBS上的帖子依关键词搜索,并依"事件"聚类,让管理者通过阅读事件可以了解正在发生或已经发生的事件,并提供自动持续追踪事件发展的功能,以协助管理者快速完整且全面地了解事件全貌。系统由网页抓取器、网页解析器及跟踪检测系统三部分组成。由于网络舆情的特点是数据量巨大,为了提高效率,系统采用了网页清理技术,并且在话题跟踪过程中使用了k-d tree方法。最后,对系统的未来工作进行了展望。
引用
收藏
页码:188 / 190
页数:3
相关论文
共 9 条
[1]  
Learning to Cluster Web Search Results. Hua-Jun Zeng,Qi-Cai,et al. SIGIR2005 .
[2]  
New Event Detection Based on Indexing-tree and Named Entity. Zhang K,Li J,Wu G. Proc.of ACM SIGIR’07 . 2007
[3]  
On-line new event detection and track-ing. Allan J,Papka R,Lavrenko V. Proc.of SIGIR Conference on Research and Development in Information Retrieval . 1998
[4]  
Topic detection and tracking pilot study:Final report. Allan J,Carbonell J,Doddington G,et al. Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop 1998 . 1998
[5]  
Handbook of Discrete and Computational Geometry. Indyk, Piotr. Chapman and Hall/CRC Press . 2004
[6]  
Some methods for classification and analysis of multivariate observations. MacQueen J. Proceedings of the Fifth Berkeley Symposium on Mathematics, Statistics and Science . 1967
[7]  
Learning approaches for detecting and tracking news events. Yang Y,Carbonell J,Brown R,et al. IEEE Intelligent Systems: Special Issue on Applications of Intelligent Information Retrieval . 1999
[8]  
Learning to Cluster Web Search Results. Hua-Jun Zeng,et al. SI-GIR’04 . 2004
[9]  
K-d Trees for Semi-dynamic PointSets. BENTLEY,J.L. SCG‘90:Proc.6th Annual Symposium on Compu-tational Geometry . 1990